CS156: The Calculus of Computation

Zohar Manna Winter 2010

Chapter 9: Quantifier-free Equality and Data Structures

The Theory of Equality T_E

$$\Sigma_E$$
: {=, a, b, c, ..., f, g, h, ..., p, q, r, ...}

uninterpreted symbols:

- constants a, b, c, \ldots
- functions f, g, h, \dots
- predicates p, q, r, \dots

Example:

Axioms of T_F

- 1 $\forall x \ x = x$
- (reflexivity) 2. $\forall x, y, x = y \rightarrow y = x$ (symmetry)
- 3. $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (transitivity)

define = to be an equivalence relation.

Axiom schema

4. for each positive integer n and n-ary function symbol f,

$$\forall \bar{x}, \bar{y}. \left(\bigwedge_{i=1}^n x_i = y_i\right) \to f(\bar{x}) = f(\bar{y})$$

(function)

For example, for unary f, the axiom is

$$\forall x', y'. \ x' = y' \rightarrow f(x') = f(y')$$

Therefore.

$$x = g(y, z) \rightarrow f(x) = f(g(y, z))$$

is
$$T_E$$
-valid. $(x' \to x, y' \to g(y, z))$.

Axiom schema

5. for each positive integer n and n-ary predicate symbol p,

$$\forall \bar{x}, \bar{y}. \left(\bigwedge_{i=1}^n x_i = y_i \right) \rightarrow (p(\bar{x}) \leftrightarrow p(\bar{y}))$$

(predicate)

Thus, for unary p, the axiom is

$$\forall x', y'.x' = y' \rightarrow (p(x') \leftrightarrow p(y'))$$

Therefore,

$$a = b \rightarrow (p(a) \leftrightarrow p(b))$$

is T_E -valid. $(x' \rightarrow a, y' \rightarrow b)$.

We discuss T_E -formulae without predicates

For example, for Σ_E -formula

$$F: p(x) \wedge q(x,y) \wedge q(y,z) \rightarrow \neg q(x,z)$$

introduce fresh constant \bullet and fresh functions f_p and f_q , and transform F to

$$G:\ f_p(x) = \bullet \ \wedge \ f_q(x,y) = \bullet \ \wedge \ f_q(y,z) = \bullet \ \rightarrow \ f_q(x,z) \neq \bullet \ .$$

Equivalence and Congruence Relations: Basics

Binary relation R over set S

- is an equivalence relation if
 - ▶ reflexive: $\forall s \in S$. s R s;
 - ▶ symmetric: $\forall s_1, s_2 \in S$. $s_1 R s_2 \rightarrow s_2 R s_1$;
 - ▶ transitive: $\forall s_1, s_2, s_3 \in S$. $s_1 R s_2 \land s_2 R s_3 \rightarrow s_1 R s_3$.

Example:

Define the binary relation \equiv_2 over the set \mathbb{Z} of integers

$$m \equiv_2 n$$
 iff $(m \mod 2) = (n \mod 2)$

That is, $m,n\in\mathbb{Z}$ are related iff they are both even or both odd. \equiv_2 is an equivalence relation

• is a congruence relation if in addition

$$\forall \overline{s}, \overline{t}. \bigwedge_{i=1}^{n} s_i R t_i \rightarrow f(\overline{s}) R f(\overline{t}).$$

Classes

For
$$\left\{\begin{array}{l} \text{equivalence} \\ \text{congruence} \end{array}\right\}$$
 relation R over set S , the $\left\{\begin{array}{l} \frac{\text{equivalence}}{\text{congruence}} \end{array}\right\}$ $\frac{\text{class}}{\text{class}}$ of $s \in S$ under R is $[s]_R \stackrel{\text{def}}{=} \{s' \in S : sRs'\}$.

Example:

The equivalence class of 3 under \equiv_2 over \mathbb{Z} is

$$[3]_{\equiv_2} = \{n \in \mathbb{Z} : n \text{ is odd}\}$$
.

Partitions

A partition P of S is a set of subsets of S that is

▶
$$\underline{\text{total}}$$
 $\left(\bigcup_{S' \in P} S'\right) = S$

$$\frac{\langle S' \in P \rangle}{\text{disjoint}} \quad \forall S_1, S_2 \in P. \ S_1 \neq S_2 \rightarrow S_1 \cap S_2 = \emptyset$$
Page 7 of 48

Quotient

The quotient
$$S/R$$
 of S by $\left\{\begin{array}{l} \text{equivalence} \\ \text{congruence} \end{array}\right\}$ relation R is the partition of S into $\left\{\begin{array}{l} \text{equivalence} \\ \text{congruence} \end{array}\right\}$ classes
$$S/R = \left\{ [s]_R : s \in S \right\}.$$

It satisfies total and disjoint conditions.

Example: The quotient \mathbb{Z}/\equiv_2 is a partition of \mathbb{Z} . The set of equivalence classes

$$\{\{n \in \mathbb{Z} : n \text{ is odd}\}, \{n \in \mathbb{Z} : n \text{ is even}\}\}$$

Note duality between relations and classes

Refinements

Two binary relations R_1 and R_2 over set S. R_1 is a <u>refinement</u> of R_2 , $R_1 \prec R_2$, if

$$\forall s_1, s_2 \in S. \ s_1R_1s_2 \ \rightarrow \ s_1R_2s_2 \ .$$

 R_1 refines R_2 .

Examples:

- ► For $S = \{a, b\}$, $R_1 : \{aR_1b\}$ $R_2 : \{aR_2b, bR_2b\}$ Then $R_1 \prec R_2$
- ightharpoonup For set $\mathbb Z$

$$R_1 : \{xR_1y : x \mod 2 = y \mod 2\}$$

 $R_2 : \{xR_2y : x \mod 4 = y \mod 4\}$
Then $R_2 \prec R_1$.

Closures

Given binary relation R over S.

The equivalence closure R^E of R is the equivalence relation s.t.

- \triangleright R refines R^E . i.e. $R \prec R^E$:
- for all other equivalence relations R' s.t. $R \prec R'$. either $R' = R^E$ or $R^E \prec R'$

That is, R^E is the "smallest" equivalence relation that "covers" R.

Example: If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then

- aR^Eb , bR^Ec , dR^Ed since $R \subseteq R^E$;
- $aR^E a$, $bR^E b$, $cR^E c$ by reflexivity;
- $bR^{E}a$, $cR^{E}b$ by symmetry:
- aREc by transitivity;
- \bullet $cR^{E}a$ by symmetry.

Similarly, the congruence closure R^C of R is the "smallest" congruence relation that "covers" R.

T_E -satisfiability and Congruence Classes I

<u>Definition</u>: For Σ_E -formula

$$F: s_1 = t_1 \wedge \cdots \wedge s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_n \neq t_n$$

the <u>subterm set</u> S_F of F is the set that contains precisely the subterms of F.

Example: The subterm set of

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

is

$$S_F = \{a, b, f(a,b), f(f(a,b),b)\}.$$

Note: we consider only quantifier-free conjunctive Σ_E -formulae. Convert non-conjunctive formula F to DNF $\bigvee_i F_i$, where each disjunct F_i is a conjunction of =, \neq . Check each disjunct F_i . F is T_E -satisfiable iff at least one disjunct F_i is T_E -satisfiable.

T_E-satisfiability and Congruence Classes II

Given Σ_E -formula F

$$F: s_1 = t_1 \wedge \cdots \wedge s_m = t_m \wedge s_{m+1} \neq t_{m+1} \wedge \cdots \wedge s_n \neq t_n$$

with subterm set S_F , F is $\underline{T_E$ -satisfiable iff there exists a congruence relation \sim over S_F such that

- ▶ for each $i \in \{1, ..., m\}$, $s_i \sim t_i$;
- ▶ for each $i \in \{m+1, \ldots, n\}$, $s_i \not\sim t_i$.

Such congruence relation \sim defines T_E -interpretation $I:(D_I,\alpha_I)$ of F. D_I consists of $|S_F/\sim|$ elements, one for each congruence class of S_F under \sim .

Instead of writing $I \models F$ for this T_E -interpretation, we abbreviate $\sim \models F$

The goal of the algorithm is to construct the congruence relation over S_F , or to prove that no congruence relation exists.

Congruence Closure Algorithm

$$F: \underbrace{s_1 = t_1 \ \land \cdots \land s_m = t_m}_{\text{generate congruence closure}} \land \underbrace{s_{m+1} \neq t_{m+1} \ \land \cdots \land s_n \neq t_n}_{\text{search for contradiction}}$$

Decide if F is T_F -satisfiable.

The algorithm performs the following steps:

1. Construct the congruence closure \sim of

$$\{s_1=t_1,\ldots,s_m=t_m\}$$

over the subterm set S_F . Then

$$\sim \models s_1 = t_1 \wedge \cdots \wedge s_m = t_m$$
.

- 2. If for any $i \in \{m+1, \ldots, n\}$, $s_i \sim t_i$, return unsatisfiable.
- 3. Otherwise, $\sim \models F$, so return satisfiable.

How do we actually construct the congruence closure in Step 1?

Congruence Closure Algorithm (Details)

Initially, begin with the finest congruence relation \sim_0 given by the partition

$$\{\{s\} : s \in S_F\}$$
.

That is, let each term over S_F be its own congruence class.

Then, for each $i \in \{1, ..., m\}$, impose $s_i = t_i$ by merging the congruence classes

$$[s_i]_{\sim_{i-1}}$$
 and $[t_i]_{\sim_{i-1}}$

to form a new congruence relation \sim_i . To accomplish this merging,

- ▶ form the union of $[s_i]_{\sim_{i-1}}$ and $[t_i]_{\sim_{i-1}}$
- propagate any new congruences that arise within this union.

The new relation \sim_i is a congruence relation in which $s_i \sim t_i$.

Congruence Closure Algorithm: Example 1 I

Given Σ_E -formula

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$

Construct initial partition by letting each member of the subterm set S_F be its own class:

1.
$$\{\{a\}, \{b\}, \{f(a,b)\}, \{f(f(a,b),b)\}\}$$

According to the first literal f(a, b) = a, merge

$$\{f(a,b)\}$$
 and $\{a\}$

to form partition

2.
$$\{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}$$

According to the (function) congruence axiom,

$$f(a,b) \sim a, \ b \sim b$$
 implies $f(f(a,b),b) \sim f(a,b)$,

resulting in the new partition

3.
$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$$

Congruence Closure Algorithm: Example 1 II

This partition represents the congruence closure of S_F . Is it the case that

$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\} \models F ?$$

No, as $f(f(a,b),b) \sim a$ but F asserts that $f(f(a,b),b) \neq a$. Hence, F is T_E -unsatisfiable.

Congruence Closure Algorithm: Example 2 I

Example: Given Σ_E -formula

 $F: f(f(f(a))) = a \land f(f(f(f(a))))) = a \land f(a) \neq a$

From the subterm set S_F , the initial partition is

1.
$$\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

where, for example, $f^3(a)$ abbreviates f(f(f(a))).

According to the literal $f^3(a) = a$, merge

$$\{f^3(a)\}\$$
and $\{a\}\ .$

From the union,

2.
$$\{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$$

deduce the following congruence propagations:

$$f^3(a) \sim a \ \Rightarrow \ f(f^3(a)) \sim f(a)$$
 i.e. $f^4(a) \sim f(a)$ and

$$f^4(a) \sim f(a) \Rightarrow f(f^4(a)) \sim f(f(a))$$
 i.e. $f^5(a) \sim f^2(a)$

Thus, the final partition for this iteration is the following:

3.
$$\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$$
.

Congruence Closure Algorithm: Example 2 II

3.
$$\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$$
.

From the second literal, $f^5(a) = a$, merge

$$\{f^2(a), f^5(a)\}$$
 and $\{a, f^3(a)\}$

to form the partition

4.
$$\{\{a, f^2(a), f^3(a), f^5(a)\}, \{f(a), f^4(a)\}\}$$
.

Propagating the congruence

$$f^3(a) \sim f^2(a) \ \Rightarrow \ f(f^3(a)) \sim f(f^2(a))$$
 i.e. $f^4(a) \sim f^3(a)$

yields the partition

5.
$$\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$$
,

which represents the congruence closure in which all of S_F are equal. Now,

$$\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\} \models F?$$

No, as $f(a) \sim a$, but F asserts that $f(a) \neq a$. Hence, F is T_F -unsatisfiable.

Congruence Closure Algorithm: Example 3

Given Σ_F -formula

$$F: f(x) = f(y) \land x \neq y$$
.

The subterm set S_F induces the following initial partition:

1.
$$\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$$
.

Then f(x) = f(y) indicates to merge

$$\{f(x)\}\$$
and $\{f(y)\}\ .$

The union $\{f(x), f(y)\}$ does not yield any new congruences, so the final partition is

2.
$$\{\{x\}, \{y\}, \{f(x), f(y)\}\}$$
.

Does

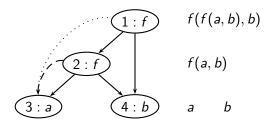
$$\{\{x\}, \{y\}, \{f(x), f(y)\}\} \models F?$$

Yes, as $x \not\sim y$, agreeing with $x \neq y$. Hence, F is T_F -satisfiable.

Implementation of Algorithm

Directed Acyclic Graph (DAG)

For Σ_E -formula F, graph-based data structure for representing the subterms of S_F (and congruence relation between them).



Efficient way for computing the congruence closure.

Summary of idea

$$f(a,b) = a \land f(f(a,b),b) \neq a$$

$$1:f$$

$$2:f$$

$$2:f$$

$$4:b$$

$$3:a$$

$$4:b$$

$$4:b$$

$$f(a,b) = a \Rightarrow f(a,b) \sim a, b \sim b \Rightarrow f(f(a,b),b) \sim f(f(a,b),b) \sim f(f(a,b),b)$$

$$f(f(a,b),b) \sim f(f(a,$$

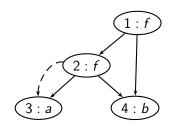
FIND f(f(a, b), b) = a = FIND a $f(f(a, b), b) \neq a$

 \Rightarrow Unsatisfiable

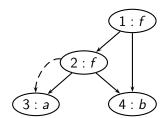
DAG representation

```
type node = {
                      : id
    id
                         node's unique identification number
                      : string
    fn
                         constant or function name
    args
                      · id list
                         list of function arguments
    mutable find id
                         the representative of the congruence class
    mutable ccpar : id set
                         if the node is the representative for its
                         congruence class, then its ccpar
                         (congruence closure parents) are all
                         parents of nodes in its congruence class
```

DAG Representation of node 2



DAG Representation of node 3

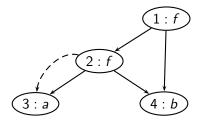


The Implementation I

FIND function

returns the representative of node's congruence class

let rec FIND
$$i =$$
let $n = \text{NODE } i$ in
if $n.\text{find} = i$ then i else FIND $n.\text{find}$



Example: FIND 2 = 3FIND 3 = 33 is the representative of $\{2,3\}$.

The Implementation II

UNION function

```
let UNION i_1 i_2 =

let n_1 = \text{NODE} (\text{FIND } i_1) in

let n_2 = \text{NODE} (\text{FIND } i_2) in

n_1.\text{find} \leftarrow n_2.\text{find};

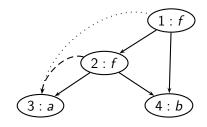
n_2.\text{ccpar} \leftarrow n_1.\text{ccpar} \cup n_2.\text{ccpar};

n_1.\text{ccpar} \leftarrow \emptyset
```

 n_2 is the representative of the union class

The Implementation III

Example



UNION 1 2
$$n_1 = 1$$
 $n_2 = 3$
1.find \leftarrow 3
3.ccpar $\leftarrow \{1, 2\}$
1.ccpar $\leftarrow \emptyset$

The Implementation IV

CCPAR function

Returns parents of all nodes in i's congruence class

let CCPAR
$$i = (NODE (FIND i)).ccpar$$

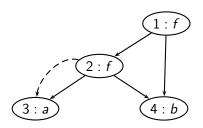
CONGRUENT predicate

Test whether i_1 and i_2 are congruent

```
let CONGRUENT i_1 i_2 =
let n_1 = \text{NODE } i_1 in
let n_2 = \text{NODE } i_2 in
n_1.\text{fn} = n_2.\text{fn}
\land |n_1.\text{args}| = |n_2.\text{args}|
\land \forall i \in \{1, \dots, |n_1.\text{args}|\}. \text{ FIND } n_1.\text{args}[i] = \text{FIND } n_2.\text{args}[i]
```

The Implementation V

Example:



```
Are 1 and 2 congruent?
```

```
fn fields — both f
# of arguments — same
left arguments f(a, b) and a — both congruent to 3
right arguments b and b — both 4 (congruent)
```

Therefore 1 and 2 are congruent.

The Implementation VI

MERGE function

```
let rec MERGE i_1 i_2 =
   if FIND i_1 \neq FIND i_2 then begin
      let P_{i_1} = \text{CCPAR } i_1 \text{ in}
      let P_{i_2} = \text{CCPAR } i_2 \text{ in}
      UNION i_1 i_2;
      foreach t_1 \in P_{i_1}, t_2 \in P_{i_2} do
         if FIND t_1 \neq \text{FIND } t_2 \land \text{CONGRUENT } t_1 \ t_2
         then MERGE t_1 t_2
      done
   end
```

 P_{i_1} and P_{i_2} store the values of CCPAR i_1 and CCPAR i_2 (before the union).

Decision Procedure: T_E -satisfiability

Given Σ_E -formula

$$F: \ s_1 = t_1 \ \wedge \ \cdots \ \wedge \ s_m = t_m \ \wedge \ s_{m+1} \neq t_{m+1} \ \wedge \ \cdots \ \wedge \ s_n \neq t_n \ ,$$

with subterm set S_F , perform the following steps:

- 1. Construct the initial DAG for the subterm set S_F .
- 2. For $i \in \{1, \ldots, m\}$, MERGE s_i t_i .
- 3. If FIND $s_i = \text{FIND } t_i$ for some $i \in \{m+1, \ldots, n\}$, return unsatisfiable.
- 4. Otherwise (if FIND $s_i \neq \text{FIND } t_i$ for all $i \in \{m+1, \ldots, n\}$) return satisfiable.

Example 1: T_E -Satisfiability

FIND $f(f(a,b),b) = a = \text{FIND } a \Rightarrow \textbf{Unsatisfiable}$

Given Σ_F -formula

$$F: f(a,b) = a \wedge f(f(a,b),b) \neq a$$
.

The subterm set is

$$S_F = \{a, b, f(a,b), f(f(a,b),b)\},\$$

resulting in the initial partition

(1)
$$\{\{a\}, \{b\}, \{f(a,b)\}, \{f(f(a,b),b)\}\}$$

in which each term is its own congruence class. Fig (1).

Final partition (Fig (3))

(2)
$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\}$$

Note: dash edge ____ merge dictated by equalities in F dotted edge deduced merge

Does

$$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\} \models F?$$

No, as $f(f(a,b),b) \sim a$, but F asserts that $f(f(a,b),b) \neq a$. Hence, F is T_F -unsatisfiable.

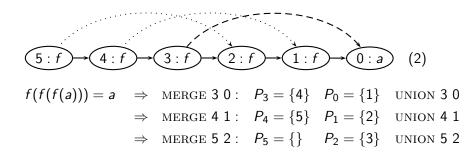
Page 33 of 48

Example 2: T_E -Satisfiability

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

$$5: f \longrightarrow 4: f \longrightarrow 3: f \longrightarrow 2: f \longrightarrow 1: f \longrightarrow 0: a \qquad (1)$$

Initial DAG



Example 2: T_E -Satisfiability

$$f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a$$

$$5: f \longrightarrow 4: f \longrightarrow 3: f \longrightarrow 2: f \longrightarrow 1: f \longrightarrow 0: a \qquad (2)$$

$$\underbrace{5:f} \longrightarrow \underbrace{4:f} \longrightarrow \underbrace{3:f} \longrightarrow \underbrace{1:f} \longrightarrow \underbrace{0:a} \quad (3)$$

Union 5 0
$$\Rightarrow$$
 Merge 3 1 : STOP.Why?

 $f(f(f(f(f(a))))) = a \Rightarrow \text{MERGE 5 0}$:

UNION 3.1

 $P_5 = \{3\}$ $P_0 = \{1, 4\}$

Given Σ_F -formula

$$F: f(f(f(a))) = a \land f(f(f(f(f(a))))) = a \land f(a) \neq a,$$

which induces the initial partition

- 1. $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$. The equality $f^3(a) = a$ induces the partition
- 2. $\{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}$. The equality $f^5(a) = a$ induces the partition
- 3. $\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\}$. Now, does

$$\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\} \models F$$
?

No, as $f(a) \sim a$, but F asserts that $f(a) \neq a$. Hence, F is T_F -unsatisfiable.

Theorem (Sound and Complete)

Quantifier-free conjunctive Σ_E -formula F is T_E -satisfiable iff the congruence closure algorithm returns satisfiable.

Recursive Data Structures

Quantifier-free Theory of Lists T_{cons}

 Σ_{cons} : {cons, car, cdr, atom, =}

• constructor cons : cons(x, y) list constructed by appending y to x

• left projector car : car(cons(x, y)) = x

• right projector cdr : cdr(cons(x, y)) = y

• <u>atom</u> : unary predicate

Axioms of T_{cons}

- reflexivity, symmetry, transitivity
- function (congruence) axioms:

$$\forall x_1, x_2, y_1, y_2. \ x_1 = x_2 \land y_1 = y_2 \rightarrow cons(x_1, y_1) = cons(x_2, y_2)$$

 $\forall x, y. \ x = y \rightarrow car(x) = car(y)$
 $\forall x, y. \ x = y \rightarrow cdr(x) = cdr(y)$

predicate (congruence) axiom:

$$\forall x, y. \ x = y \rightarrow (atom(x) \leftrightarrow atom(y))$$

 $(A1) \ \forall x, y. \ \operatorname{car}(\operatorname{cons}(x, y)) = x \qquad \text{(left projection)}$ $(A2) \ \forall x, y. \ \operatorname{cdr}(\operatorname{cons}(x, y)) = y \qquad \text{(right projection)}$ $(A3) \ \forall x. \ \neg \operatorname{atom}(x) \to \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) = x \qquad \text{(construction)}$ $(A4) \ \forall x, y. \ \neg \operatorname{atom}(\operatorname{cons}(x, y)) \qquad \text{(atom)}$

Simplifications

- ightharpoonup Consider only quantifier-free conjunctive Σ_{cons} -formulae. Convert non-conjunctive formula to DNF and check each disjunct.
- ▶ \neg atom(u_i) literals are removed:

replace
$$\neg atom(u_i)$$
 with $u_i = cons(u_i^1, u_i^2)$

by the (construction) axiom.

ightharpoonup Result of a conjunctive Σ_{cons} -formula with literals

$$s = t$$
 $s \neq t$ atom(u)

▶ Because of similarity to Σ_E , we sometimes combine $\Sigma_{cons} \cup \Sigma_E$.

Algorithm: T_{cons} -Satisfiability (the idea)

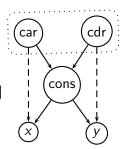
$$\wedge \underbrace{s_{m+1} \neq t_{m+1} \ \wedge \cdots \ \wedge \ s_n \neq t_n}_{\text{search for contradiction}}$$

$$\wedge \underbrace{\mathsf{atom}(u_1) \ \wedge \ \cdots \ \wedge \ \mathsf{atom}(u_\ell)}_{\mathsf{search for contradiction}}$$

where s_i , t_i , and u_i are T_{cons} -terms

Algorithm: T_{cons}-Satisfiability

- 1. Construct the initial DAG for S_F
- 2. for each node n with n.fn = cons
 - ▶ add car(n) and MERGE car(n) n.args[1]
 - ▶ add cdr(n) and MERGE cdr(n) n.args[2] by axioms (A1), (A2)
- 3. for $1 \le i \le m$, MERGE s_i t_i
- 4. for $m+1 \le i \le n$, if FIND $s_i = \text{FIND } t_i$, return **unsatisfiable**
- 5. for $1 \le i \le \ell$, if $\exists v$. FIND $v = \text{FIND } u_i \land v.\text{fn} = \text{cons}$, return **unsatisfiable**
- 6. Otherwise, return satisfiable



Example

Given $(\Sigma_{cons} \cup \Sigma_E)$ -formula

$$F: \begin{array}{c} \operatorname{car}(x) = \operatorname{car}(y) \ \land \ \operatorname{cdr}(x) = \operatorname{cdr}(y) \\ \land \ \neg \operatorname{atom}(x) \ \land \ \neg \operatorname{atom}(y) \ \land \ f(x) \neq f(y) \end{array}$$

where the function symbol f is in Σ_E

$$car(x) = car(y) \quad \land \tag{1}$$

$$\operatorname{cdr}(x) = \operatorname{cdr}(y) \wedge$$
 (2)

$$F': \qquad x = \cos(u_1, v_1) \quad \land \tag{3}$$

$$y = \cos(u_2, v_2) \quad \land \tag{4}$$

$$f(x) \neq f(y) \tag{5}$$

Recall the projection axioms:

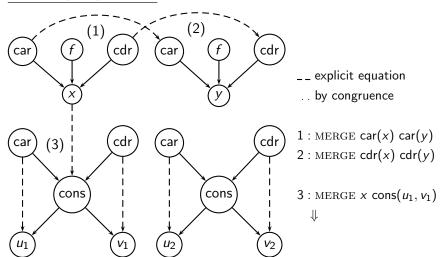
(A1)
$$\forall x, y. \operatorname{car}(\operatorname{cons}(x, y)) = x$$

(A2)
$$\forall x, y. \operatorname{cdr}(\operatorname{cons}(x, y)) = y$$

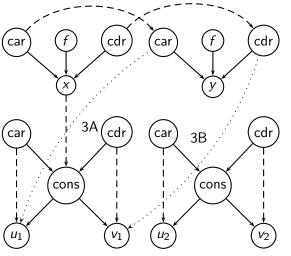
Example (cont): Initial DAG



Example (cont): MERGE



Example (cont): Propagation



Congruent:

$$car(x) car(cons(u_1, v_1))$$

FIND $car(x) = car(y)$
FIND $car(cons(...)) = u_1$

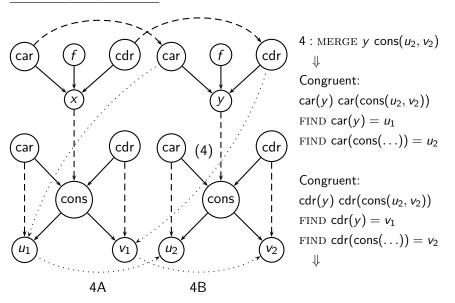
Congruent:

congruent:

$$\operatorname{cdr}(x) \operatorname{cdr}(\operatorname{cons}(u_1, v_1))$$

FIND $\operatorname{cdr}(x) = \operatorname{cdr}(y)$
FIND $\operatorname{cdr}(\operatorname{cons}(\ldots)) = v_1$

Example (cont): MERGE



Example (cont): CONGRUENCE

