CS156: The Calculus of Computation _{Zohar Manna} Winter 2010	The Theory of Equality T_E Σ_E : {=, a, b, c,, f, g, h,, p, q, r,} uninterpreted symbols: • constants a, b, c, • functions f, g, h, • predicates p, q, r, Example: $x = y \land f(x) \neq f(y)$ T_E -unsatisfiable $f(x) = f(y) \land x \neq y$ T_E -satisfiable
Chapter 9: Quantifier-free Equality and Data Structures	$f(f(f(a))) = a \land f(f(f(f(a))))) = a \land f(a) \neq a$ T_{E} -unsatisfiable $x = g(y, z) \to f(x) = f(g(y, z))$ T_{E} -valid
Page 1 of 48 Axioms of $T_{\underline{E}}$ 1. $\forall x, x = x$ (reflexivity) 2. $\forall x, y, z, x = y \rightarrow y = x$ (symmetry) 3. $\forall x, y, z, x = y \land y = z \rightarrow x = z$ (transitivity) define = to be an <u>equivalence relation</u> . Axiom schema 4. for each positive integer <i>n</i> and <i>n</i> -ary function symbol <i>f</i> , $\forall \bar{x}, \bar{y}. \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \rightarrow f(\bar{x}) = f(\bar{y})$ (function)	Page 2 of 48 Axiom schema 5. for each positive integer <i>n</i> and <i>n</i> -ary predicate symbol <i>p</i> , $\forall \bar{x}, \bar{y}. \left(\bigwedge_{i=1}^{n} x_i = y_i \right) \rightarrow (p(\bar{x}) \leftrightarrow p(\bar{y}))$ (predicate) Thus, for unary <i>p</i> , the axiom is $\forall x', y'.x' = y' \rightarrow (p(x') \leftrightarrow p(y'))$ Therefore,
For example, for unary f, the axiom is $\forall x', y', x' = y' \rightarrow f(x') = f(y')$ Therefore, $x = g(y, z) \rightarrow f(x) = f(g(y, z))$ is T, unlid $(x', y, y', y', g(y, z))$	$a = b \rightarrow (p(a) \leftrightarrow p(b))$ is T_E -valid. $(x' \rightarrow a, y' \rightarrow b)$.
is T_E -value. $(x \to x, y \to g(y, z))$. Page 3 of 48	Page 4 of 48

$ \begin{array}{l} \hline \text{We discuss } \overline{T_E}\text{-formulae without predicates} \\ \hline \text{For example, for } \Sigma_E\text{-formula} \\ F: p(x) \land q(x,y) \land q(y,z) \rightarrow \neg q(x,z) \\ \hline \text{introduce fresh constant } \bullet \text{ and fresh functions } f_p \text{ and } f_q, \text{ and} \\ \hline \text{transform } F \text{ to} \\ \hline \mathcal{G}: f_p(x) = \bullet \land f_q(x,y) = \bullet \land f_q(y,z) = \bullet \rightarrow f_q(x,z) \neq \bullet . \end{array} $	Equivalence and Congruence Relations: Basics Binary relation R over set S • is an equivalence relation if • reflexive: $\forall s \in S. \ s \ R \ s_1$ • symmetric: $\forall s_1, s_2 \in S. \ s_1 \ R \ s_2 \ \land \ s_2 \ R \ s_1 \ \rightarrow \ s_1 \ R \ s_3$. Example: Define the binary relation \equiv_2 over the set \mathbb{Z} of integers
	$\begin{split} m &\equiv_2 n \text{iff} (m \text{ mod } 2) = (n \text{ mod } 2) \\ \text{That is, } m, n \in \mathbb{Z} \text{ are related iff they are both even or both odd.} \\ &\equiv_2 \text{ is an equivalence relation} \\ \bullet \text{ is a } \underbrace{\text{congruence relation}}_{\forall \overline{s}, \overline{t}, \ \overline{t}, \ \overline{s}, R \ t_i \ \to \ f(\overline{s}) \ R \ f(\overline{t}) \ . \end{split}$
د ت ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک	د ته ۱۹۵۰ کې ۱۹۵۰ کې ۲۹۵۴ کې ۲ Page 6 of 48
$ \begin{array}{l} \hline Classes\\ For \left\{\begin{array}{l} equivalence\\ congruence\\ \hline congruence\\ \hline equivalence\\ \hline congruence\\ \hline [s]_R \stackrel{def}{=} \{s' \in S : sRs'\} \ . \end{array} \right. $	$\begin{array}{l} \underline{\text{Quotient}} \\ \text{The } \underline{\text{quotient}} & S/R \text{ of } S \text{ by } \left\{ \begin{array}{l} \text{equivalence} \\ \text{congruence} \end{array} \right\} \text{relation } R \text{ is the} \\ \\ \text{partition of } S \text{ into } \left\{ \begin{array}{l} \text{equivalence} \\ \text{congruence} \end{array} \right\} \text{classes} \\ \\ S/R &= \left\{ [\mathbf{s}]_R \ : \ s \in S \right\} . \end{array}$
Example: The equivalence class of 3 under \equiv_2 over \mathbb{Z} is	It satisfies total and disjoint conditions.
The equivalence class of 3 linder $=_2$ over $\mathbb Z$ is $[\mathbf 3]_{\equiv_2} = \{n \in \mathbb Z \ : \ n \text{ is odd}\} \ .$	Example: The quotient \mathbb{Z}/\equiv_2 is a partition of $\mathbb{Z}.$ The set of equivalence classes
Partitions A partition <i>P</i> of <i>S</i> is a set of subsets of <i>S</i> that is	$\{\{n\in\mathbb{Z}\ :\ n \text{ is odd}\},\ \{n\in\mathbb{Z}\ :\ n \text{ is even}\}\}$
$\overbrace{\text{total}} \left(\bigcup_{S' \in P} S' \right) = S$	Note duality between relations and classes
• disjoint $\forall S_1, S_2 \in P. S_1 \neq S_2 \rightarrow S_1 \cap S_2 = \emptyset$ Page 7 of 48	ि । अस्त २००० Page 8 of 48

$\label{eq:response} \begin{aligned} &\frac{Refinements}{r_1} \mbox{ we binary relations } R_1 \mbox{ and } R_2 \mbox{ over set } S, \\ &R_1 \mbox{ is a } \frac{refinement}{r_2} \mbox{ of } R_2, R_1 < R_2 S, \\ &\ &\ &\ &\ &\ &\ &\ &\ &\ &\ &\ &\ &\ $	Closures Given binary relation R over S. The equivalence closure R^E of R is the equivalence relation s.t. • R refines R^E , i.e. $R \prec R^E$; • for all other equivalence relations R' s.t. $R \prec R'$, either $R' = R^E$ or $R^E \prec R'$ That is, R^E is the "smallest" equivalence relation that "covers" R. Example: If $S = \{a, b, c, d\}$ and $R = \{aRb, bRc, dRd\}$, then • aR^E_b, bR^E_c, dR^Ed since $R \subseteq R^E$; • $aR^E_a, bR^E_b, cR^E c$ by reflexivity; • aR^E_a by symmetry; • aR^E_a by symmetry; • aR^E_a by symmetry; • aR^E_a by symmetry. Similarly, the congruence closure R^C of R is the "smallest" congruence relation that "covers" R. • Page 10 of 48
T_{F} -satisfiability and Congruence Classes I	T_F -satisfiability and Congruence Classes II
<u>Definition</u> : For Σ_E -formula	Given Σ_E -formula F
$F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$	$F: s_1 = t_1 \land \cdots \land s_m = t_m \land s_{m+1} \neq t_{m+1} \land \cdots \land s_n \neq t_n$
the <u>subterm set</u> S_F of F is the set that contains precisely the subterms of F . <u>Example</u> : The subterm set of	 with subterm set S_F, F is <u>T_E-satisfiable</u> iff there exists a congruence relation ~ over S_F such that F for each i ∈ {1,,m}, s_i ~ t_i; F for each i ∈ {m + 1,,n}, s_i ~ t_i.
$F: \ f(a,b) = a \ \land \ f(f(a,b),b) \neq a$ is $S_F = \{a, \ b, \ f(a,b), \ f(f(a,b),b)\} \ .$	Such congruence relation \sim defines T_E -interpretation $I : (D_I, \alpha_I)$ of F . D_I consists of $ S_F/ \sim $ elements, one for each congruence class of S_F under \sim .
<u>Note</u> : we consider only quantifier-free conjunctive Σ_E -formulae. Convert non-conjunctive formula F to DNF V_i , F_i , where each disjunct F_i is a conjunction of $=, \neq$. Check each disjunct F_i . F is T_E -satisfiable iff at least one disjunct F_i is T_E -satisfiable. Page 11 of 48	Instead of writing $I \models F$ for this T_E -interpretation, we abbreviate $\sim \models F$ The goal of the algorithm is to construct the congruence relation over S_F , or to prove that no congruence relation exists

Congruence Closure Algorithm (Details)
Initially, begin with the finest congruence relation \sim_0 given by the partition $\{\{s\} \ : \ s \in S_F\} \ .$
That is, let each term over S_F be its own congruence class.
Then, for each $i \in \{1, \ldots, m\}$, impose $s_i = t_i$ by merging the congruence classes
$[s_i]_{\sim_{i-1}}$ and $[t_i]_{\sim_{i-1}}$
to form a new congruence relation \sim_i . To accomplish this merging,
▶ form the union of [s _i] _{∼i-1} and [t _i] _{∼i-1}
propagate any new congruences that arise within this union.
The new relation \sim_i is a congruence relation in which $s_i \sim t_i$.
د المعنية المعن
Congruence Closure Algorithm: Example 1 II
This partition represents the congruence closure of S_F . Is it the case that
$\{\{a, f(a, b), f(f(a, b), b)\}, \{b\}\} \models F$?
No, as $f(f(a, b), b) \sim a$ but F asserts that $f(f(a, b), b) \neq a$. Hence, F is T_E -unsatisfiable.
ت، ۲۰۰۵، ۲۰۵۰ کې ۹۵۰ Page 16 of 48

Congruence Closure Algorithm: Example 2 II Congruence Closure Algorithm: Example 2 I Example: Given Σ_F -formula 3. {{ $a, f^{3}(a)$ }, { $f(a), f^{4}(a)$ }, { $f^{2}(a), f^{5}(a)$ }}. $F: f(f(f(a))) = a \land f(f(f(f(a)))) = a \land f(a) \neq a$ From the second literal, $f^5(a) = a$, merge From the subterm set S_F , the initial partition is $\{f^2(a), f^5(a)\}$ and $\{a, f^3(a)\}$ 1. $\{\{a\}, \{f(a)\}, \{f^2(a)\}, \{f^3(a)\}, \{f^4(a)\}, \{f^5(a)\}\}$ to form the partition where, for example, $f^{3}(a)$ abbreviates f(f(f(a))). 4. {{ $a, f^{2}(a), f^{3}(a), f^{5}(a)$ }, { $f(a), f^{4}(a)$ }}. According to the literal $f^{3}(a) = a$, merge Propagating the congruence $\{f^{3}(a)\}$ and $\{a\}$. $f^{3}(a) \sim f^{2}(a) \Rightarrow f(f^{3}(a)) \sim f(f^{2}(a))$ i.e. $f^{4}(a) \sim f^{3}(a)$ From the union. vields the partition 2. { $\{a, f^{3}(a)\}, \{f(a)\}, \{f^{2}(a)\}, \{f^{4}(a)\}, \{f^{5}(a)\}\}$ 5. { { $a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)$ } } deduce the following congruence propagations: which represents the congruence closure in which all of S_F are $f^{3}(a) \sim a \implies f(f^{3}(a)) \sim f(a)$ i.e. $f^{4}(a) \sim f(a)$ equal. Now, and $f^4(a) \sim f(a) \Rightarrow f(f^4(a)) \sim f(f(a))$ i.e. $f^5(a) \sim f^2(a)$ $\{\{a, f(a), f^2(a), f^3(a), f^4(a), f^5(a)\}\} \models F ?$ No, as $f(a) \sim a$, but F asserts that $f(a) \neq a$. Hence, F is Thus, the final partition for this iteration is the following: 3. {{ $a, f^{3}(a)$ }, { $f(a), f^{4}(a)$ }, { $f^{2}(a), f^{5}(a)$ }}. T_F-unsatisfiable. 000 \$ (\$) (\$) (\$) (0) Page 17 of 48 Page 18 of 48

Congruence Closure Algorithm: Example 3

Given Σ_E -formula

$$F: f(x) = f(y) \land x \neq y$$
.

The subterm set S_F induces the following initial partition:

1. $\{\{x\}, \{y\}, \{f(x)\}, \{f(y)\}\}$.

Then f(x) = f(y) indicates to merge

$$\{f(x)\}\ \text{and}\ \{f(y)\}\ .$$

The union $\{f(x), f(y)\}$ does not yield any new congruences, so the final partition is

2. $\{\{x\}, \{y\}, \{f(x), f(y)\}\}$.

Does

 $\{\{x\}, \{y\}, \{f(x), f(y)\}\} \models F ?$

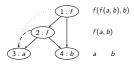
Yes, as $x \not\sim y$, agreeing with $x \neq y$. Hence, F is T_E-satisfiable.

Page 19 of 48

Implementation of Algorithm

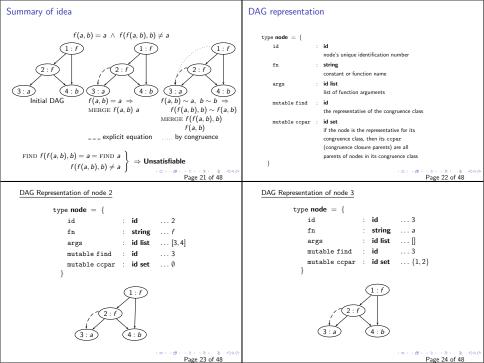
Directed Acyclic Graph (DAG)

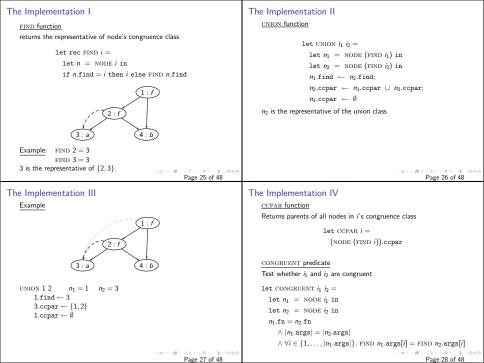
For Σ_{E} -formula *F*, graph-based data structure for representing the subterms of S_{F} (and congruence relation between them).

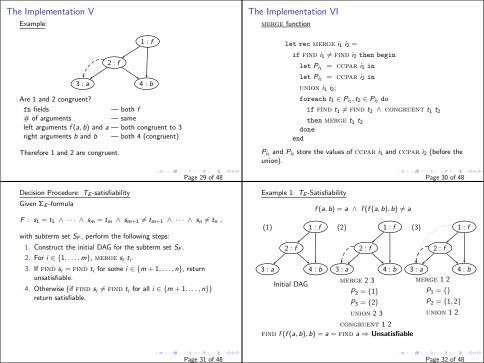


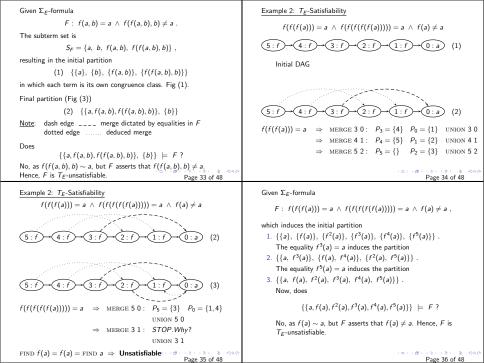
Efficient way for computing the congruence closure.

Page 20 of 48









Recursive Data Structures
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $
Page 38 of 48
<text><text><text><equation-block><text><text><text><text><equation-block></equation-block></text></text></text></text></equation-block></text></text></text>

Algorithm: T_{cons} -Satisfiability (the idea) $F: \qquad f: \qquad $	 Algorithm: T_{cons}-Satisfiability 1. Construct the initial DAG for S_F 1. de dar(n) and MERGE car(n) n.args[1] 1. de dar(n) and MERGE car(n) n.args[2] 1. de dar(n) and MERGE sq (n) n.arg
Page 41 of 48	Page 42 of 48
Example	Example (cont): Initial DAG
$ \begin{array}{l} Given \left(\Sigma_{cons} \cup \Sigma_{\mathcal{E}} \right) \text{-formula} \\ F : & car(x) = car(y) \ \land \ cdr(x) = cdr(y) \\ F : & \land \neg atom(x) \ \land \neg atom(y) \ \land \ f(x) \neq f(y) \\ \text{where the function symbol } f \text{ is in } \Sigma_{\mathcal{E}} \end{array} $	car (f) cdr (ar (f) cdr
$car(x) = car(y) \land (1)$ $cdr(x) = cdr(y) \land (2)$ $F': x = cons(u_1, v_1) \land (3)$ $y = cons(u_2, v_2) \land (4)$ $f(x) \neq f(y) \qquad (5)$	car (cdr) car (cdr) axioms (A1), (A2)
Recall the projection axioms:	
د ته دی دی و معرف (۲۵ مار ۲۵ مار ۲ Page 43 of 48	· · · · · · · · · · · · · · · · · · ·

