CS156: The Calculus of

 ComputationZohar Manna

Winter 2010

Chapter 4: Induction

Induction

- Stepwise induction (for $T_{\mathrm{PA}}, T_{\text {cons }}$)
- Complete induction (for $T_{\mathrm{PA}}, T_{\text {cons }}$)

Theoretically equivalent in power to stepwise induction, but sometimes produces more concise proof

- Well-founded induction

Generalized complete induction

- Structural induction

Over logical formulae

Stepwise Induction (Peano Arithmetic T_{PA})

Axiom schema (induction)
$F[0] \wedge \quad$... base case
($\forall n . F[n] \rightarrow F[n+1]$) $\quad \ldots$ inductive step
$\rightarrow \forall x . F[x] \quad \ldots$ conclusion
for $\Sigma_{P A}$-formulae $F[x]$ with one free variable x.
To prove $\forall x . F[x]$, the conclusion, i.e., $F[x]$ is $T_{\text {PA }}$-valid for all $x \in \mathbb{N}$,
it suffices to show

- base case: prove $F[0]$ is T_{PA}-valid.
- inductive step: For arbitrary $n \in \mathbb{N}$, assume inductive hypothesis, i.e., $F[n]$ is T_{PA}-valid,
then prove
$F[n+1]$ is T_{PA}-valid.

Example

Prove:

$$
F[n]: 1+2+\cdots+n=\frac{n(n+1)}{2}
$$

for all $n \in \mathbb{N}$.

- Base case: $F[0]: 0=\frac{0.1}{2}$
- Inductive step: Assume $F[n]: 1+2+\cdots+n=\frac{n(n+1)}{2}$, (IH) show

$$
\begin{align*}
F[n+1] & : 1+2+\cdots+n+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1) \tag{IH}\\
& =\frac{n(n+1)+2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{align*}
$$

Therefore,

$$
\forall n \in \mathbb{N} .1+2+\ldots+n=\frac{n(n+1)}{2}
$$

Example:

Theory $T_{\text {PA }}^{+}$obtained from $T_{\text {PA }}$ by adding the axioms:

- $\forall x \cdot x^{0}=1$
- $\forall x, y \cdot x^{y+1}=x^{y} \cdot x$
- $\forall x, y, z . \exp _{3}(x, y+1, z)=\exp _{3}(x, y, x \cdot z)$
$\left(\exp _{3}(x, y, z)\right.$ stands for $\left.x^{y} . z\right)$
Prove that

$$
\forall x, y \cdot \exp _{3}(x, y, 1)=x^{y}
$$

is $T_{P A}^{+}$-valid.

First attempt:

$$
\forall y[\underbrace{\forall x \cdot \exp _{3}(x, y, 1)=x^{y}}_{F[y]}]
$$

We chose induction on y. Why?

Base case:

$$
F[0]: \forall x \cdot \exp _{3}(x, 0,1)=x^{0}
$$

For arbitrary $x \in \mathbb{N}$, $\exp _{3}(x, 0,1)=1$ (P0) and $x^{0}=1$ (E0).
Inductive step: Failure.
For arbitrary $n \in \mathbb{N}$, we cannot deduce

$$
F[n+1]: \forall x . \exp _{3}(x, n+1,1)=x^{n+1}
$$

from the inductive hypothesis

$$
F[n]: \forall x . \exp _{3}(x, n, 1)=x^{n}
$$

Second attempt: Strengthening
Strengthened property

$$
\forall x, y, z . \exp _{3}(x, y, z)=x^{y} \cdot z
$$

Implies the desired property (choose $z=1$)

$$
\forall x, y \cdot \exp _{3}(x, y, 1)=x^{y}
$$

Proof of strengthened property:
Again, induction on y

$$
\forall y[\underbrace{\forall x, z \cdot \exp _{3}(x, y, z)=x^{y} \cdot z}_{F[y]}]
$$

Base case:

$$
F[0]: \forall x, z \cdot \exp _{3}(x, 0, z)=x^{0} \cdot z
$$

For arbitrary $x, z \in \mathbb{N}$, $\exp _{3}(x, 0, z)=z(\mathrm{P} 0)$ and $x^{0}=1$ (E0).

Inductive step: For arbitrary $n \in \mathbb{N}$
Assume inductive hypothesis

$$
\begin{equation*}
F[n]: \forall x, z . \exp _{3}(x, n, z)=x^{n} \cdot z \tag{IH}
\end{equation*}
$$

prove

$$
\begin{gathered}
F[n+1]: \forall x^{\prime}, z^{\prime} \cdot \exp _{3}\left(x^{\prime}, n+1, z^{\prime}\right)=x^{\prime n+1} \cdot z^{\prime} \\
\text { note }
\end{gathered}
$$

Consider arbitrary $x^{\prime}, z^{\prime} \in \mathbb{N}$:

$$
\begin{align*}
\exp _{3}\left(x^{\prime}, n+1, z^{\prime}\right) & =\exp _{3}\left(x^{\prime}, n, x^{\prime} \cdot z^{\prime}\right) \tag{P1}\\
& =x^{\prime n} \cdot\left(x^{\prime} \cdot z^{\prime}\right) \\
& =x^{\prime n+1} \cdot z^{\prime} \tag{E1}
\end{align*}
$$

IH $F[n] ; x \mapsto x^{\prime}, z \mapsto x^{\prime} \cdot z^{\prime}$

Stepwise Induction (Lists $T_{\text {cons }}$)

Axiom schema (induction)

$(\forall$ atom $u . F[u]) \wedge$	\ldots base case
$(\forall u, v . F[v] \rightarrow F[\operatorname{cons}(u, v)])$	\ldots inductive step
$\rightarrow \forall x . F[x]$	\ldots conclusion

for $\Sigma_{\text {cons }}$-formulae $F[x]$ with one free variable x.
Note: \forall atom $u . F[u]$ stands for $\forall u$. (atom $(u) \rightarrow F[u])$.
To prove $\forall x . F[x]$, i.e.,
$F[x]$ is $T_{\text {cons }}$-valid for all lists x,
it suffices to show

- base case: prove $F[u]$ is $T_{\text {cons }}$-valid for arbitrary atom u.
- inductive step: For arbitrary lists u, v,
assume inductive hypothesis, i.e.,
$F[v]$ is $T_{\text {cons-valid, }}$
then prove
$F[\operatorname{cons}(u, v)]$ is $T_{\text {cons }}$-valid.

Example: Theory $T_{\text {cons }}^{+}$I

$T_{\text {cons }}$ with axioms
Concatenating two lists

- \forall atom $u . \forall v . \operatorname{concat}(u, v)=\operatorname{cons}(u, v)$
- $\forall u, v, x$. concat $(\operatorname{cons}(u, v), x)=\operatorname{cons}(u, \operatorname{concat}(v, x))$

Example: Theory $T_{\text {cons }}^{+}$II

Example: for atoms a, b, c, d,

$$
\begin{align*}
& \operatorname{concat}(\operatorname{cons}(a, \operatorname{cons}(b, c)), d) \\
= & \operatorname{cons}(a, \operatorname{concat}(\operatorname{cons}(b, c), d)) \tag{C1}\\
= & \operatorname{cons}(a, \operatorname{cons}(b, \operatorname{concat}(c, d))) \tag{C1}\\
= & \operatorname{cons}(a, \operatorname{cons}(b, \operatorname{cons}(c, d))) \tag{C0}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{concat}(\operatorname{cons}(\operatorname{cons}(a, b), c), d) \\
= & \operatorname{cons}(\operatorname{cons}(a, b), \operatorname{concat}(c, d)) \tag{C1}\\
= & \operatorname{cons}(\operatorname{cons}(a, b), \operatorname{cons}(c, d)) \tag{C0}
\end{align*}
$$

Example: Theory $T_{\text {cons }}^{+}$III

Reversing a list

- \forall atom $u \cdot \operatorname{rvs}(u)=u$
- $\forall x, y \cdot \operatorname{rvs}(\operatorname{concat}(x, y))=\operatorname{concat}(r v s(y), r v s(x))$

Example: for atoms a, b, c,

$$
\begin{align*}
& r v s(\operatorname{cons}(a, \operatorname{cons}(b, c)) \\
= & r v s(\operatorname{concat}(a, \operatorname{concat}(b, c))) \tag{C0}\\
= & \operatorname{concat}(r v s(\operatorname{concat}(b, c)), r v s(a)) \\
= & \operatorname{concat}(\operatorname{concat}(r v s(c), r v s(b)), r v s(a)) \\
= & \operatorname{concat}(\operatorname{concat}(c, b), a) \\
= & \operatorname{concat}(\operatorname{cons}(c, b), a) \\
= & \operatorname{cons}(c, \operatorname{concat}(b, a)) \\
= & \operatorname{cons}(c, \operatorname{cons}(b, a)) \tag{C0}
\end{align*}
$$

Example: Theory $T_{\text {cons }}^{+}$IV

Deciding if a list is flat;
i.e., flat (x) is true iff every element of list x is an atom.

- \forall atom u. flat (u)
- $\forall u, v$. flat $(\operatorname{cons}(u, v)) \leftrightarrow \operatorname{atom}(u) \wedge f l a t(v)$

Example: for atoms a, b, c,

$$
\begin{array}{ll}
\text { flat }(\operatorname{cons}(a, \operatorname{cons}(b, c))) & =\text { true } \\
\text { flat }(\operatorname{cons}(\operatorname{cons}(a, b), c)) & =\text { false }
\end{array}
$$

Prove

$$
\forall x . \underbrace{\text { flat }(x) \rightarrow \underset{r v s}{ }(r v s(x))=x}_{F[x]}
$$

is $T_{\text {cons }}^{+}-$valid.
Base case: For arbitrary atom u,

$$
F[u]: f l a t(u) \rightarrow \operatorname{rvs}(r v s(u))=u
$$

by F0 and R0.
Inductive step: For arbitrary lists u, v, assume the inductive hypothesis

$$
\begin{equation*}
F[v]: \operatorname{flat}(v) \rightarrow \operatorname{rvs}(r v s(v))=v \tag{IH}
\end{equation*}
$$

and prove

$$
\begin{align*}
& F[\operatorname{cons}(u, v)]: f l a t(\operatorname{cons}(u, v)) \rightarrow \\
& \operatorname{rvs}(r v s(\operatorname{cons}(u, v)))=\operatorname{cons}(u, v) \tag{*}\\
& \underline{\text { Case } \neg \operatorname{atom}(u)} \\
& \text { flat }(\operatorname{cons}(u, v)) \Leftrightarrow \operatorname{atom}(u) \wedge \text { flat }(v) \Leftrightarrow \perp
\end{align*}
$$

by (F1). (*) holds since its antecedent is \perp.

Case atom (u)

$$
\text { flat }(\operatorname{cons}(u, v)) \Leftrightarrow \operatorname{atom}(u) \wedge \text { flat }(v) \Leftrightarrow \operatorname{flat}(v)
$$

by (F1). Now, show

$$
\operatorname{rvs}(r v s(\operatorname{cons}(u, v)))=\cdots=\operatorname{cons}(u, v)
$$

Missing steps:

$$
\begin{align*}
& r v s(r v s(\operatorname{cons}(u, v))) \\
= & r v s(r v s(\operatorname{concat}(u, v))) \tag{C0}\\
= & r v s(\operatorname{concat}(r v s(v), r v s(u))) \tag{R1}\\
= & \operatorname{concat}(r v s(r v s(u)), r v s(r v s(v))) \tag{R1}\\
= & \operatorname{concat}(u, r v s(r v s(v))) \\
= & \operatorname{concat}(u, v) \\
= & \operatorname{cons}(u, v)
\end{align*}
$$

(IH), since flat (v)
(C0)

Complete Induction (Peano Arithmetic T_{PA})

Axiom schema (complete induction)

```
\((\forall n .(\underbrace{\forall n^{\prime} . n^{\prime}<n \rightarrow F\left[n^{\prime}\right]}_{I H}) \rightarrow F[n]) \quad \ldots\) inductive step
\(\rightarrow \forall x . F[x]\)
... conclusion
```

for $\Sigma_{\text {PA }}$-formulae $F[x]$ with one free variable x.
To prove $\forall x . F[x]$, the conclusion i.e., $F[x]$ is T_{PA}-valid for all $x \in \mathbb{N}$,
it suffices to show

- inductive step: For arbitrary $n \in \mathbb{N}$, assume inductive hypothesis, i.e., $F\left[n^{\prime}\right]$ is $T_{\text {PA }}$-valid for every $n^{\prime} \in \mathbb{N}$ such that $n^{\prime}<n$, then prove
$F[n]$ is $T_{P A}$-valid.

Is base case missing?
No. Base case is implicit in the structure of complete induction. Note:

- Complete induction is theoretically equivalent in power to stepwise induction.
- Complete induction sometimes yields more concise proofs.

Example: Integer division $\quad \operatorname{quot}(5,3)=1$ and $\operatorname{rem}(5,3)=2$
Theory T_{PA}^{*} obtained from T_{PA} by adding the axioms:

- $\forall x, y . x<y \rightarrow \operatorname{quot}(x, y)=0$
- $\forall x, y . y>0 \rightarrow q u o t(x+y, y)=q u o t(x, y)+1$
- $\forall x, y . x<y \rightarrow \operatorname{rem}(x, y)=x$
- $\forall x, y . y>0 \rightarrow r e m(x+y, y)=r e m(x, y)$

Prove
(1) $\forall x, y . y>0 \rightarrow r e m(x, y)<y$
(2) $\forall x, y . y>0 \rightarrow x=y \cdot \operatorname{quot}(x, y)+\operatorname{rem}(x, y)$

Best proved by complete induction.

Proof of (1)

$$
\forall x \cdot \underbrace{\forall y \cdot y>0 \rightarrow \operatorname{rem}(x, y)<y}_{F[x]}
$$

Consider an arbitrary natural number x.
Assume the inductive hypothesis

$$
\begin{equation*}
\forall x^{\prime} . x^{\prime}<x \rightarrow \underbrace{\forall y^{\prime} \cdot y^{\prime}>0 \rightarrow \operatorname{rem}\left(x^{\prime}, y^{\prime}\right)<y^{\prime}}_{F\left[x^{\prime}\right]} \tag{lH}
\end{equation*}
$$

Prove $F[x]: \forall y . y>0 \rightarrow r e m(x, y)<y$.
Let y be an arbitrary positive integer
Case $x<y$:

$$
\begin{array}{rlll}
r e m(x, y) & =x & & \text { by }(R 0) \\
& <y & \text { case }
\end{array}
$$

Case $\neg(x<y)$:
Then there is natural number $n, n<x$ s.t. $x=n+y$

$$
\begin{align*}
\operatorname{rem}(x, y) & =\operatorname{rem}(n+y, y) & & x=n+y \\
& =\operatorname{rem}(n, y) & & (\mathrm{R} 1) \tag{R1}\\
& <y & & \mathrm{IH}\left(x^{\prime} \mapsto n, y^{\prime} \mapsto y\right) \\
& & & \text { since } n<x \text { and } y>0
\end{align*}
$$

Well-founded Induction I

A binary predicate \prec over a set S is a well-founded relation iff there does not exist an infinite decreasing sequence

$$
s_{1} \succ s_{2} \succ s_{3} \succ \cdots \text { where } s_{i} \in S
$$

Note: where $s \prec t$ iff $t \succ s$
Examples:

- < is well-founded over the natural numbers.

Any sequence of natural numbers decreasing according to $<$ is finite:

$$
1023>39>30>29>8>3>0
$$

- $<$ is not well-founded over the rationals in $[0,1]$.

$$
1>\frac{1}{2}>\frac{1}{3}>\frac{1}{4}>\cdots
$$

is an infinite decreasing sequence.

Well-founded Induction II

- < is not well-founded over the integers:

$$
7200>\ldots>217>\ldots>0>\ldots>-17>\ldots
$$

- The strict sublist relation \prec_{c} is well-founded over the set of all lists.
- The relation

$$
F \prec G \text { iff } F \text { is a strict subformula of } G
$$

is well-founded over the set of formulae.

Well-founded Induction Principle
For theory T and well-founded relation \prec, the axiom schema (well-founded induction)
$\left(\forall n .\left(\forall n^{\prime} . n^{\prime} \prec n \rightarrow F\left[n^{\prime}\right]\right) \rightarrow F[n]\right) \rightarrow \forall x . F[x]$
for Σ-formulae $F[x]$ with one free variable x.
To prove $\forall x . F[x]$, i.e., $F[x]$ is T-valid for every x, it suffices to show

- inductive step: For arbitrary n, assume inductive hypothesis, i.e., $F\left[n^{\prime}\right]$ is T-valid for every n^{\prime}, such that $n^{\prime} \prec n$ then prove $F[n]$ is T-valid.

Complete induction in $T_{\text {PA }}$ is a specific instance of well-founded induction, where the well-founded relation \prec is $<$.

Lexicographic Relation

Given pairs $\left(S_{i}, \prec_{i}\right)$ of sets S_{i} and well-founded relations \prec_{i}

$$
\left(S_{1}, \prec_{1}\right), \ldots,\left(S_{m}, \prec_{m}\right)
$$

Construct

$$
S=S_{1} \times \ldots \times S_{m}
$$

i.e., the set of m-tuples $\left(s_{1}, \ldots, s_{m}\right)$ where each $s_{i} \in S_{i}$.

Define lexicographic relation \prec over S as

$$
\underbrace{\left(s_{1}, \ldots, s_{m}\right)}_{s} \prec \underbrace{\left(t_{1}, \ldots, t_{m}\right)}_{t} \Leftrightarrow \bigvee_{i=1}^{m}\left(s_{i} \prec_{i} t_{i} \wedge \bigwedge_{j=1}^{i-1} s_{j}=t_{j}\right)
$$

for $s_{i}, t_{i} \in S_{i}$.

- If $\left(S_{1}, \prec_{1}\right), \ldots,\left(S_{m}, \prec_{m}\right)$ are well-founded, so is (S, \prec). Example: $S=\{A, \cdots, Z\}, m=3, C A T \prec D O G, D O G \prec D R Y$, $\overline{D O G} \prec D O T$.

Example: For the set \mathbb{N}^{3} of triples of natural numbers with the lexicographic relation \prec,

$$
(5,2,17) \prec(5,4,3)
$$

Lexicographic well-founded induction principle
For theory T and well-founded lexicographic relation \prec,

$$
\left(\forall \bar{n} .\left(\forall \bar{n}^{\prime} . \bar{n}^{\prime} \prec \bar{n} \rightarrow F\left[\bar{n}^{\prime}\right]\right) \rightarrow F[\bar{n}]\right) \rightarrow \forall \bar{x} . F[\bar{x}]
$$

for $\Sigma_{T \text {-formula }} F[\bar{x}]$ with free variables \bar{x}, is T-valid.
Same as regular well-founded induction, just

$$
\begin{aligned}
n & \Rightarrow \text { tuple } \bar{n}=\left(n_{1}, \ldots, n_{m}\right) \quad x \Rightarrow \text { tuple } \bar{x}=\left(x_{1}, \ldots, x_{m}\right) \\
n^{\prime} & \Rightarrow \text { tuple } \bar{n}^{\prime}=\left(n_{1}^{\prime}, \ldots, n_{m}^{\prime}\right)
\end{aligned}
$$

Example: Puzzle

Bag of red, yellow, and blue chips
If one chip remains in the bag - remove it (empty bag - the process terminates)
Otherwise, remove two chips at random:

1. If one of the two is red don't put any chips in the bag
2. If both are yellow put one yellow and five blue chips
3. If one of the two is blue and the other not red put ten red chips
Does this process terminate?
Proof: Consider

- Set $S: \mathbb{N}^{3}$ of triples of natural numbers and
- Well-founded lexicographic relation $<_{3}$ for such triples, e.g.

$$
(11,13,3) \nless_{3}(11,9,104) \quad(11,9,104)<_{3}(11,13,3)
$$

Let y, b, r be the yellow, blue, and red chips in the bag before a move.
Let $y^{\prime}, b^{\prime}, r^{\prime}$ be the yellow, blue, and red chips in the bag after a move.

Show

$$
\left(y^{\prime}, b^{\prime}, r^{\prime}\right)<_{3}(y, b, r)
$$

for each possible case. Since <3 well-founded relation
\Rightarrow only finite decreasing sequences \Rightarrow process must terminate

1. If one of the two removed chips is red do not put any chips in the bag

$$
\left.\begin{array}{c}
(y-1, b, r-1) \\
(y, b-1, r-1) \\
(y, b, r-2)
\end{array}\right\}<3(y, b, r)
$$

2. If both are yellow put one yellow and five blue

$$
(y-1, b+5, r)<3(y, b, r)
$$

3. If one is blue and the other not red put ten red

$$
\left.\begin{array}{c}
(y-1, b-1, r+10) \\
(y, b-2, r+10)
\end{array}\right\}<3(y, b, r)
$$

Example: Ackermann function

Theory $T_{\mathbb{N}}^{\text {ack }}$ is the theory of Presburger arithmetic $T_{\mathbb{N}}$ (for natural numbers) augmented with

Ackermann axioms:

- $\forall y . \operatorname{ack}(0, y)=y+1$
- $\forall x \cdot \operatorname{ack}(x+1,0)=\operatorname{ack}(x, 1)$
- $\forall x, y \cdot \operatorname{ack}(x+1, y+1)=\operatorname{ack}(x, \operatorname{ack}(x+1, y))$

Ackermann function grows quickly:
$\operatorname{ack}(0,0)=1$
$\operatorname{ack}(1,1)=3$
$\operatorname{ack}(2,2)=7$
$\operatorname{ack}(4,4)=2^{2^{2^{2^{16}}}}-3$
$\operatorname{ack}(3,3)=61$

Proof of termination

Let $<_{2}$ be the lexicographic extension of $<$ to pairs of natural numbers.
(L0) $\forall y \cdot \operatorname{ack}(0, y)=y+1$
does not involve recursive call
(R0) $\forall x \cdot \operatorname{ack}(x+1,0)=\operatorname{ack}(x, 1)$

$$
(x+1,0)>_{2}(x, 1)
$$

(S) $\forall x, y \cdot \operatorname{ack}(x+1, y+1)=\operatorname{ack}(x, \operatorname{ack}(x+1, y))$

$$
\begin{aligned}
& (x+1, y+1)>_{2}(x+1, y) \\
& (x+1, y+1)>_{2}(x, \operatorname{ack}(x+1, y))
\end{aligned}
$$

No infinite recursive calls \Rightarrow the recursive computation of ack (x, y) terminates for all pairs of natural numbers.

Proof of property

Use well-founded induction over <2 to prove

$$
\forall x, y \cdot \operatorname{ack}(x, y)>y
$$

is $T_{\mathbb{N}}^{\text {ack }}$ valid.
Consider arbitrary natural numbers x, y.
Assume the inductive hypothesis

$$
\begin{equation*}
\forall x^{\prime}, y^{\prime} \cdot \overline{\left(x^{\prime}, y^{\prime}\right)<2(x, y)} \rightarrow \underbrace{\operatorname{ack}\left(x^{\prime}, y^{\prime}\right)>y^{\prime}}_{F\left[x^{\prime}, y^{\prime}\right]} \tag{IH}
\end{equation*}
$$

Show

$$
F[x, y]: \operatorname{ack}(x, y)>y .
$$

Case $x=0$:

$$
\operatorname{ack}(0, y)=y+1>y \quad \text { by }(\mathrm{L} 0)
$$

Case $x>0 \wedge y=0$:

$$
\operatorname{ack}(x, 0)=\operatorname{ack}(x-1,1) \quad \text { by }(\mathrm{R} 0)
$$

Since

$$
(\underbrace{x-1}_{x^{\prime}}, \underbrace{1}_{y^{\prime}})<2(x, y)
$$

Then

$$
\operatorname{ack}(x-1,1)>1 \quad \text { by }(\mathrm{IH})\left(x^{\prime} \mapsto x-1, y^{\prime} \mapsto 1\right)
$$

Thus

$$
\operatorname{ack}(x, 0)=\operatorname{ack}(x-1,1)>1>0
$$

Case $x>0 \wedge y>0:$

$$
\begin{equation*}
\operatorname{ack}(x, y)=\operatorname{ack}(x-1, \operatorname{ack}(x, y-1)) \quad \text { by }(\mathrm{S}) \tag{1}
\end{equation*}
$$

Since

$$
(\underbrace{x-1}_{x^{\prime}}, \underbrace{\operatorname{ack}(x, y-1)}_{y^{\prime}})<2(x, y)
$$

Then

$$
\begin{equation*}
\operatorname{ack}(x-1, \operatorname{ack}(x, y-1))>\operatorname{ack}(x, y-1) \tag{2}
\end{equation*}
$$

by (IH) $\left(x^{\prime} \mapsto x-1, y^{\prime} \mapsto \operatorname{ack}(x, y-1)\right)$.

Furthermore, since

$$
(\underbrace{x}_{x^{\prime}}, \underbrace{y-1}_{y^{\prime}})<2(x, y)
$$

then

$$
\begin{equation*}
\operatorname{ack}(x, y-1)>y-1 \tag{3}
\end{equation*}
$$

By (1)-(3), we have

$$
\operatorname{ack}(x, y) \stackrel{(1)}{=} \operatorname{ack}(x-1, \operatorname{ack}(x, y-1)) \stackrel{(2)}{>} \operatorname{ack}(x, y-1) \stackrel{(3)}{>} y-1
$$

Hence

$$
\operatorname{ack}(x, y)>(y-1)+1=y
$$

Structural Induction

How do we prove properties about logical formulae themselves?
Structural induction principle
To prove a desired property of formulae,
inductive step: Assume the inductive hypothesis, that for arbitrary formula F, the desired property holds for every strict subformula G of F.
Then prove that F has the property.

Since atoms do not have strict subformulae, they are treated as base cases.

Note: "strict subformula relation" is well-founded

Example: Prove that

Every propositional formula F is equivalent to a propositional formula F^{\prime} constructed with only \top, \vee, \neg (and propositional variables)

Base cases:
$F: \top \Rightarrow F^{\prime}: \top$
$F: \perp \Rightarrow F^{\prime}: \neg \top$
$F: P \Rightarrow F^{\prime}: P$ for propositional variable P

Inductive step:
Assume as the inductive hypothesis that G, G_{1}, G_{2} are equivalent to $G^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}$ constructed only from T, \vee, \neg (and propositional variables).
$F: \neg G \quad \Rightarrow \quad F^{\prime}: \neg G^{\prime}$
$F: G_{1} \vee G_{2} \quad \Rightarrow \quad F^{\prime}: G_{1}^{\prime} \vee G_{2}^{\prime}$
$F: G_{1} \wedge G_{2} \quad \Rightarrow \quad F^{\prime}: \neg\left(\neg G_{1}^{\prime} \vee \neg G_{2}^{\prime}\right)$
$F: G_{1} \rightarrow G_{2} \quad \Rightarrow \quad F^{\prime}: \neg G_{1}^{\prime} \vee G_{2}^{\prime}$
$F: G_{1} \leftrightarrow G_{2} \Rightarrow\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right) \wedge\left(G_{2}^{\prime} \rightarrow G_{1}^{\prime}\right) \Rightarrow F^{\prime}: \ldots$
Each F^{\prime} is equivalent to F and is constructed only by T, \vee, \neg by the inductive hypothesis.

