
CS156: The Calculus of
Computation

Zohar Manna
Winter 2010

Chapter 3: First-Order Theories

Page 1 of 31

First-Order Theories I

First-order theory T consists of

◮ Signature ΣT - set of constant, function, and predicate
symbols

◮ Set of axioms AT - set of closed (no free variables)
ΣT -formulae

A ΣT -formula is a formula constructed of constants, functions,
and predicate symbols from ΣT , and variables, logical connectives,
and quantifiers.

The symbols of ΣT are just symbols without prior meaning — the
axioms of T provide their meaning.
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First-Order Theories II
A ΣT -formula F is valid in theory T (T -valid, also T |= F ),
iff every interpretation I that satisfies the axioms of T ,

i.e. I |= A for every A ∈ AT (T -interpretation)
also satisfies F ,

i.e. I |= F

A ΣT -formula F is satisfiable in T (T -satisfiable), if there is a
T -interpretation (i.e. satisfies all the axioms of T ) that satisfies F

Two formulae F1 and F2 are equivalent in T (T -equivalent),
iff T |= F1 ↔ F2,

i.e. if for every T -interpretation I , I |= F1 iff I |= F2

Note:

◮ I |= F stands for “F true under interpretation I”

◮ T |= F stands for “F is valid in theory T”

Page 3 of 31

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of
formulae of the theory.

Example: a quantifier-free fragment of theory T is the set of
quantifier-free formulae in T .

A theory T is decidable if T |= F (T -validity) is decidable for
every ΣT -formula F ;

i.e., there is an algorithm that always terminate with “yes”, if
F is T -valid, and “no”, if F is T -invalid.

A fragment of T is decidable if T |= F is decidable for every
ΣT -formula F obeying the syntactic restriction.
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Theory of Equality TE I

Signature:

Σ= : {=, a, b, c , · · · , f , g , h, · · · , p, q, r , · · · }

consists of

◮ =, a binary predicate, interpreted with meaning provided by
axioms

◮ all constant, function, and predicate symbols

Axioms of TE

1. ∀x . x = x (reflexivity)

2. ∀x , y . x = y → y = x (symmetry)

3. ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

4. for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi

→ f (x1, . . . , xn) = f (y1, . . . , yn) (function congruence)

Page 5 of 31

Theory of Equality TE II
5. for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi

→ (p(x1, . . . , xn) ↔ p(y1, . . . , yn)) (predicate congruence)

(function) and (predicate) are axiom schemata.
Example:

(function) for binary function f for n = 2:

∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f (x1, x2) = f (y1, y2)

(predicate) for unary predicate p for n = 1:

∀x , y . x = y → (p(x) ↔ p(y))

Note: we omit “congruence” for brevity.
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Decidability of TE I

TE is undecidable.

The quantifier-free fragment of TE is decidable. Very efficient
algorithm.

Semantic argument method can be used for TE

Example: Prove

F : a = b ∧ b = c → g(f (a), b) = g(f (c), a)

is TE -valid.
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Decidability of TE II
Suppose not; then there exists a TE-interpretation I such that
I 6|= F . Then,

1. I 6|= F assumption

2. I |= a = b ∧ b = c 1, →
3. I 6|= g(f (a), b) = g(f (c), a) 1, →
4. I |= a = b 2, ∧
5. I |= b = c 2, ∧
6. I |= a = c 4, 5, (transitivity)

7. I |= f (a) = f (c) 6, (function)

8. I |= b = a 4, (symmetry)

9. I |= g(f (a), b) = g(f (c), a) 7, 8, (function)

10. I |= ⊥ 3, 9 contradictory

F is TE-valid.
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Natural Numbers and Integers
Natural numbers N = {0, 1, 2, · · · }
Integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }

Three variations:

◮ Peano arithmetic TPA: natural numbers with addition,
multiplication, =

◮ Presburger arithmetic TN: natural numbers with addition, =

◮ Theory of integers TZ: integers with +,−, >,=,
multiplication by constants
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1. Peano Arithmetic TPA (first-order arithmetic)

ΣPA : {0, 1, +, ·, =}
Equality Axioms: (reflexivity), (symmetry), (transitivity),
(function) for +, (function) for · .

And the axioms:

1. ∀x . ¬(x + 1 = 0) (zero)

2. ∀x , y . x + 1 = y + 1 → x = y (successor)

3. F [0] ∧ (∀x . F [x ] → F [x + 1]) → ∀x . F [x ] (induction)

4. ∀x . x + 0 = x (plus zero)

5. ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6. ∀x . x · 0 = 0 (times zero)

7. ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.
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Example: 3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

Note: we have > and ≥ since

3x + 5 > 2y write as ∃z . z 6= 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Example:

Existence of pythagorean triples (F is TPA-valid):

F : ∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ x · x + y · y = z · z
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Decidability of Peano Arithmetic

TPA is undecidable. (Gödel, Turing, Post, Church)
The quantifier-free fragment of TPA is undecidable.

(Matiyasevich, 1970)

Remark: Gödel’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:

There exist closed ΣPA-formulae representing valid
propositions of number theory that are not TPA-valid.

The reason: TPA actually admits nonstandard interpretations.

For decidability: no multiplication
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2. Presburger Arithmetic TN

Signature ΣN : {0, 1, +, =} no multiplication!

Axioms of TN (equality axioms, with 1-5):

1. ∀x . ¬(x + 1 = 0) (zero)

2. ∀x , y . x + 1 = y + 1 → x = y (successor)

3. F [0] ∧ (∀x . F [x ] → F [x + 1]) → ∀x . F [x ] (induction)

4. ∀x . x + 0 = x (plus zero)

5. ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

Line 3 is an axiom schema.

TN-satisfiability (and thus TN-validity) is decidable
(Presburger, 1929)
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3. Theory of Integers TZ

Signature:

ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, >, =}
where

◮ . . . ,−2,−1, 0, 1, 2, . . . are constants

◮ . . . ,−3·,−2·, 2·, 3·, . . . are unary functions
(intended meaning: 2 · x is x + x , −3 · x is −x − x − x)

◮ +,−, >,= have the usual meanings.

Relation between TZ and TN:

TZ and TN have the same expressiveness:
◮ For every ΣZ-formula there is an equisatisfiable ΣN-formula.
◮ For every ΣN-formula there is an equisatisfiable ΣZ-formula.

ΣZ-formula F and ΣN-formula G are equisatisfiable iff:

F is TZ-satisfiable iff G is TN-satisfiable
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ΣZ-formula to ΣN-formula I

Example: consider the ΣZ-formula

F0 : ∀w , x . ∃y , z . x + 2y − z − 7 > −3w + 4.

Introduce two variables, vp and vn (range over the nonnegative
integers) for each variable v (range over the integers) of F0:

F1 :
∀wp, wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn)− (zp − zn)− 7 > −3(wp − wn) + 4

Eliminate − by moving to the other side of >:

F2 :
∀wp, wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 7 + 3wn + 4
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ΣZ-formula to ΣN-formula II
Eliminate > and numbers:

F3 :

∀wp, wn, xp, xn. ∃yp, yn, zp, zn. ∃u.

¬(u = 0) ∧ xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u

+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

which is a ΣN-formula equisatisfiable to F0.

To decide TZ-validity for a ΣZ-formula F :

◮ transform ¬F to an equisatisfiable ΣN-formula ¬G ,

◮ decide TN-validity of G .
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ΣZ-formula to ΣN-formula III
Example: The ΣN-formula

∀x . ∃y . x = y + 1

is equisatisfiable to the ΣZ-formula:

∀x . x > −1 → ∃y . y > −1 ∧ x = y + 1.
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Rationals and Reals

Signatures:

ΣQ = {0, 1, +, −, =, ≥}
ΣR = ΣQ ∪ {·}

◮ Theory of Reals TR (with multiplication)

x · x = 2 ⇒ x = ±
√

2

◮ Theory of Rationals TQ (no multiplication)

2x︸︷︷︸
x+x

= 7 ⇒ x =
7

2

Note: strict inequality okay; simply rewrite

x + y > z

as follows:
¬(x + y = z) ∧ x + y ≥ z
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1. Theory of Reals TR

Signature:
ΣR : {0, 1, +, −, ·, =, ≥}

with multiplication. Axioms in text.

Example:

∀a, b, c . b2 − 4ac ≥ 0 ↔ ∃x . ax2 + bx + c = 0

is TR-valid.

TR is decidable (Tarski, 1930)
High time complexity

Page 19 of 31

2. Theory of Rationals TQ

Signature:
ΣQ : {0, 1, +, −, =, ≥}

without multiplication. Axioms in text.

Rational coefficients are simple to express in TQ.

Example: Rewrite
1

2
x +

2

3
y ≥ 4

as the ΣQ-formula
3x + 4y ≥ 24

TQ is decidable
Quantifier-free fragment of TQ is efficiently decidable
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Recursive Data Structures (RDS) I

Tuples of variables where the elements can be instances of the
same structure: e.g., linked lists or trees.

1. Theory Tcons (LISP-like lists)

Signature:
Σcons : {cons, car, cdr, atom, =}

where

cons(a, b)− list constructed by concatenating a and b
car(x) − left projector of x : car(cons(a, b)) = a
cdr(x) − right projector of x : cdr(cons(a, b)) = b
atom(x) − true iff x is a single-element list

Note: an atom is simply something that is not a cons. In this
formulation, there is no NIL value.
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Recursive Data Structures (RDS) II
Axioms:

1. The axioms of reflexivity, symmetry, and transitivity of =

2. Function Congruence axioms

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)

∀x , y . x = y → car(x) = car(y)

∀x , y . x = y → cdr(x) = cdr(y)
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3. Predicate Congruence axiom

∀x , y . x = y → (atom(x) ↔ atom(y))

4. ∀x , y . car(cons(x , y)) = x (left projection)

5. ∀x , y . cdr(cons(x , y)) = y (right projection)

6. ∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

7. ∀x , y . ¬atom(cons(x , y)) (atom)

Note: the behavior of car and cons on atoms is not specified.

Tcons is undecidable
Quantifier-free fragment of Tcons is efficiently decidable
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Lists with equality

2. Theory TE
cons (lists with equality)

TE
cons = TE ∪ Tcons

Signature:
ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

TE
cons is undecidable

Quantifier-free fragment of TE
cons is efficiently decidable

Example: The ΣE
cons-formula

F :
car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ ¬atom(x) ∧ ¬atom(y)

→ f (x) = f (y)

is TE
cons-valid.
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Suppose not; then there exists a TE
cons-interpretation I such that

I 6|= F . Then,

1. I 6|= F assumption

2. I |= car(x) = car(y) 1, → , ∧
3. I |= cdr(x) = cdr(y) 1, → , ∧
4. I |= ¬atom(x) 1, → , ∧
5. I |= ¬atom(y) 1, → , ∧
6. I 6|= f (x) = f (y) 1, →
7. I |= cons(car(x), cdr(x)) = cons(car(y), cdr(y))

2, 3, (function)

8. I |= cons(car(x), cdr(x)) = x 4, (construction)

9. I |= cons(car(y), cdr(y)) = y 5, (construction)

10. I |= x = y 7, 8, 9, (transitivity)

11. I |= f (x) = f (y) 10, (function)

Lines 6 and 11 are contradictory, so our assumption that I 6|= F
must be wrong. Therefore, F is TE

cons-valid.
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Theory of Arrays TA

Signature:
ΣA : {·[·], ·〈· ⊳ ·〉, =}

where

◮ a[i ] binary function –
read array a at index i (“read(a,i)”)

◮ a〈i ⊳ v〉 ternary function –
write value v to index i of array a (“write(a,i ,v)”)

Axioms

1. the axioms of (reflexivity), (symmetry), and (transitivity) of
TE

2. ∀a, i , j . i = j → a[i ] = a[j ] (array congruence)

3. ∀a, v , i , j . i = j → a〈i ⊳ v〉[j ] = v (read-over-write 1)

4. ∀a, v , i , j . i 6= j → a〈i ⊳ v〉[j ] = a[j ] (read-over-write 2)
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Note: = is only defined for array elements

F : a[i ] = e → a〈i ⊳ e〉 = a

not TA-valid, but

F ′ : a[i ] = e → ∀j . a〈i ⊳ e〉[j ] = a[j ] ,

is TA-valid.

Also
a = b → a[i ] = b[i ]

is not TA-valid: We have only axiomatized a restricted congruence.

TA is undecidable
Quantifier-free fragment of TA is decidable
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2. Theory of Arrays T=
A (with extensionality)

Signature and axioms of T=
A are the same as TA, with one

additional axiom

∀a, b. (∀i . a[i ] = b[i ]) ↔ a = b (extensionality)

Example:
F : a[i ] = e → a〈i ⊳ e〉 = a

is T=
A -valid.

T=
A is undecidable

Quantifier-free fragment of T=
A is decidable
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First-Order Theories
Quantifiers QFF

Theory Decidable Decidable

TE Equality − ✓

TPA Peano Arithmetic − −
TN Presburger Arithmetic ✓ ✓

TZ Linear Integer Arithmetic ✓ ✓

TR Real Arithmetic ✓ ✓

TQ Linear Rationals ✓ ✓

Tcons Lists − ✓

TE
cons Lists with Equality − ✓
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Combination of Theories

How do we show that

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-valid?

Or how do we prove properties about
an array of integers, or
a list of reals . . . ?

Given theories T1 and T2 such that

Σ1 ∩ Σ2 = {=}

The combined theory T1 ∪ T2 has

◮ signature Σ1 ∪ Σ2

◮ axioms A1 ∪ A2
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Nelson & Oppen showed that,
if

◮ validity of the quantifier-free fragment (qff) of T1 is decidable,

◮ validity of qff of T2 is decidable, and

◮ certain technical simple requirements are met,

then validity of qff of T1 ∪ T2 is decidable.
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