

Nelson-Oppen: Limitations

Given formula F in theory $T_1 \cup T_2$.

- 1. F must be quantifier-free.
- Signatures Σ_i of the combined theory <u>only share =</u>, i.e.,

 $\Sigma_1\cap\Sigma_2=\{=\}$

3. Theories must be stably infinite.

Note:

- Algorithm can be extended to combine arbitrary number of theories T_i — combine two, then combine with another, and so on.
- We restrict F to be conjunctive formula otherwise convert to equivalent DNF and check each disjunct.

Example: T_E is stably infinite

Proof.

Let *F* be *T_E*-satisfiable quantifier-free Σ_E -formula with arbitrary satisfying *T_E*-interpretation *I* : (*D_I*, α_I). α_I maps = to =*I*. Let A be any infinite set disjoint from *D_I*. Construct new interpretation *J* : (*D_J*, α_J) such that

- ► $D_J = D_I \cup A$
- ► α_J agrees with α_I : the extension of functions and predicates for A is irrelevant, except =_J. For v₁, v₂ ∈ D_J,

 $v_1 =_J v_2 \equiv \begin{cases} v_1 =_J v_2 & \text{if } v_1, v_2 \in D_J \\ \text{true} & \text{if } v_1 \text{ is the same element as } v_2 \\ \text{false} & \text{otherwise} \end{cases}$

J is a T_E -interpretation satisfying F with infinite domain. Hence, T_E is stably infinite. Page 7 of 31

Stably Infinite Theories

A Σ -theory T is stably infinite iff for every quantifier-free Σ -formula F: if F is T-satisfiable then there exists some T-interpretation that satisfies Fwith infinite domain

Example: Σ -theory T

 $\Sigma: \{a, b, =\}$

Axiom

 $\forall x. \ x = a \ \lor \ x = b$

For every *T*-interpretation *I*, $|D_I| \le 2$ (by the axiom — at most two elements). Hence, *T* is *not* stably infinite.

All the other theories mentioned so far are stably infinite.

Example

Page 5 of 31

Consider quantifier-free conjunctive $(\Sigma_E \cup \Sigma_Z)$ -formula

 $F: 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2).$

The signatures of T_E and $T_{\mathbb{Z}}$ only share =. Also, both theories are stably infinite. Hence, the N-O combination of the decision procedures for T_E and $T_{\mathbb{Z}}$ decides the $(T_E \cup T_{\mathbb{Z}})$ -satisfiability of F.

Intuitively, F is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable. For the first two literals imply $x = 1 \lor x = 2$ so that $f(x) = f(1) \lor f(x) = f(2)$. Contradict last two literals. Hence, F is $(T_E \cup T_{\mathbb{Z}})$ -unsatisfiable.

Page 8 of 31

Nelson-Oppen Method: Overview	Phase 1: Variable abstraction
Nelson-Oppen Method: Overview Consider quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula F. Two versions: • nondeterministic — simple to present, but high complexity • deterministic — efficient Nelson-Oppen (N-O) method proceeds in two steps: • Phase 1 (variable abstraction) — same for both versions • Phase 2 nondeterministic: guess equalities/disequalities and check deterministic: generate equalities/disequalities by equality propagation	Phase 1: Variable abstraction Given quantifier-free conjunctive $(\Sigma_1 \cup \Sigma_2)$ -formula F . Transform F into two quantifier-free conjunctive formulae Σ_1 -formula F_1 and Σ_2 -formula F_2 s.t. F is $(T_1 \cup T_2)$ -satisfiable iff $F_1 \wedge F_2$ is $(T_1 \cup T_2)$ -satisfiable F_1 and F_2 are linked via a set of shared variables: shared $(F_1, F_2) = \text{free}(F_1) \cap \text{free}(F_2)$ For term t , let $hd(t)$ be the root symbol, e.g. $hd(f(x)) = f$.
Generation of F_1 and F_2	Page 10 of 31
For $i, j \in \{1, 2\}$ and $i \neq j$, repeat the transformations (1) if function $f \in \Sigma_i$ and $hd(t) \in \Sigma_j$, $F[f(t_1, \dots, t, \dots, t_n)] \implies F[f(t_1, \dots, w, \dots, t_n)] \land w = t$ (2) if predicate $p \in \Sigma_i$ and $hd(t) \in \Sigma_j$, $F[p(t_1, \dots, t, \dots, t_n)] \implies F[p(t_1, \dots, w, \dots, t_n)] \land w = t$ (3) if $hd(s) \in \Sigma_j$ and $hd(t) \in \Sigma_j$, $F[s = t] \implies F[w = t] \land w = s$ $F[s \neq t] \implies F[w \neq t] \land w = s$ where w is a fresh variable in each application of a transformation.	$ \begin{array}{l} \mbox{Consider } (\Sigma_E\cup\Sigma_{\mathbb{Z}})\mbox{-formula} \\ F:\ 1\leq x\ \land\ x\leq 2\ \land\ f(x)\neq f(1)\ \land\ f(x)\neq f(2)\ . \\ \mbox{By transformation 1, since } f\in\Sigma_E \mbox{ and } 1\in\Sigma_{\mathbb{Z}}, \\ \ \mbox{replace } f(1)\ \mbox{by } f(w_1)\ \mbox{and } w_1=1. \ \mbox{Similarly,} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
(미· (경· (공· 공·) 역· Pare 11 of 31	$F_{\mathbb{Z}} \wedge F_E$ is $(T_E \cup T_{\mathbb{Z}})$ -equisatisfiable to F . Page 12 of 31

Nondeterministic Version Example Consider ($\Sigma_F \cup \Sigma_Z$)-formula Phase 2: Guess and Check $F: f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2).$ Phase 1 separated (Σ₁ ∪ Σ₂)-formula F into two formulae: In the first literal, $hd(f(x)) = f \in \Sigma_F$ and $hd(x + y) = + \in \Sigma_Z$; Σ_1 -formula F_1 and Σ_2 -formula F_2 thus, by (3), replace the literal with F1 and F2 are linked by a set of shared variables: $w_1 = x + y \wedge w_1 = f(x) .$ In the final literal, $f \in \Sigma_F$ but $2 \in \Sigma_Z$, so by (1), replace it with $V = \text{shared}(F_1, F_2) = \text{free}(F_1) \cap \text{free}(F_2)$ $f(x) \neq f(w_2) \land w_2 = 2$. Let E be an equivalence relation over V. Now, separating the literals results in two formulae: The arrangement α(V, E) of V induced by E is: $F_{\mathbb{Z}}$: $w_1 = x + y \land x \leq y + z \land x + z \leq y \land y = 1 \land w_2 = 2$ $\alpha(V, E)$: $\bigwedge_{u,v \in V, u \in v} u = v$ is a $\Sigma_{\mathbb{Z}}$ -formula, and $F_{\mathbf{F}}$: $w_1 = f(x) \wedge f(x) \neq f(w_2)$ $\land \qquad \bigwedge \qquad u \neq v$ is a Σ_F -formula. $u, v \in V$. $\neg(uEv)$ The conjunction $F_{\mathbb{Z}} \wedge F_E$ is $(T_E \cup T_{\mathbb{Z}})$ -equisatisfiable to $F_{\mathbb{Z}}$ Page 13 of 31 Nondeterministic Version Example 1 Lemma Consider ($\Sigma_F \cup \Sigma_Z$)-formula the original formula F is $(T_1 \cup T_2)$ -satisfiable iff there exists an equivalence relation E over V s.t. $F: 1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$ F₁ ∧ α(V, E) is T₁-satisfiable, and

Phase 1 separates this formula into the $\Sigma_{\mathbb{Z}}$ -formula

 F_{π} : $1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2$

and the Σ_F -formula

$$F_E$$
: $f(x) \neq f(w_1) \land f(x) \neq f(w_2)$

with

$$V = \text{shared}(F_1, F_2) = \{x, w_1, w_2\}$$

There are 5 equivalence relations over V to consider, which we list by stating the partitions:

Page 15 of 31

(2) F₂ ∧ α(V, E) is T₂-satisfiable.

Otherwise, F is $(T_1 \cup T_2)$ -unsatisfiable.

(D) ((0) (2) (2) (2) (2) Page 16 of 31

9.00 \$ (\$) (\$) (\$) (\$)

Page 14 of 31

Example 1 1. {{x, w ₁ , w ₂ }}, <i>i.e.</i> , $x = w_1 = w_2$: $x = w_1$ and $f(x) \neq f(w_1) \Rightarrow F_E \land \alpha(V, E)$ is T_E -unsatisfiable. 2. {{x, w ₁ }, {w ₂ }}, <i>i.e.</i> , $x = w_1, x \neq w_2$: $x = w_1$ and $f(x) \neq f(w_1) \Rightarrow F_E \land \alpha(V, E)$ is T_E -unsatisfiable. 3. {{x, w ₂ }, {w ₁ }}, <i>i.e.</i> , $x = w_2, x \neq w_1$: $x = w_2$ and $f(x) \neq f(w_1) \Rightarrow F_E \land \alpha(V, E)$ is T_E -unsatisfiable. 4. {{x, w ₁ }, {w ₁ }}, <i>i.e.</i> , $x \neq w_1, w_1 = w_2$: $w_1 = w_2$ and $w_1 = 1 \land w_2 = 2$ $\Rightarrow F_Z \land \alpha(V, E)$ is T_Z -unsatisfiable. 5. {{x}, {w ₁ }, {w ₂ }}, <i>i.e.</i> , $x \neq w_1, x \neq w_2, w_1 \neq w_2$: $x \neq w_1 \land x \neq w_2$ and $x = u = 1 \lor x = w_2 = 2$ (since $1 \le x \le 2$ implies that $x = 1 \lor x = w_2 = 2$ (since $1 \le x \le 2$ implies that $x = 1 \lor x = 2$ in T_Z) $\Rightarrow F_Z \land \alpha(V, E)$ is T_Z -unsatisfiable. Hence, F is $(T_E \cup T_Z)$ -unsatisfiable.	Example 2 Consider the $(\Sigma_{cons} \cup \Sigma_Z)$ -formula $F : car(x) + car(y) = z \land cons(x, z) \neq cons(y, z)$. After two applications of (1), Phase 1 separates F into the Σ_{cons} -formula $F_{cons} : w_1 = car(x) \land w_2 = car(y) \land cons(x, z) \neq cons(y, z)$ and the Σ_Z -formula $F_Z : w_1 + w_2 = z$, with $V = shared(F_{cons}, F_Z) = \{z, w_1, w_2\}$.
Page 17 of 31	Page 18 of 31
Example 2 Consider the equivalence relation <i>E</i> given by the partition $\{\{z\}, \{w_1\}, \{w_2\}\}.$ The arrangement $\alpha(V, E) : z \neq w_1 \land z \neq w_2 \land w_1 \neq w_2$ satisfies both F_{cons} and F_{Σ} : $F_{cons} \land \alpha(V, E)$ is T_{cons} -satisfiable, and $F_{\Sigma} \land \alpha(V, E)$ is T_{Z} -satisfiable. Hence, <i>F</i> is $(T_{cons} \cup T_Z)$ -satisfiable.	 Practical Efficiency Phase 2 was formulated as "guess and check": First, guess an equivalence relation <i>E</i>, then check the induced arrangement. The number of equivalence relations grows super-exponentially with the # of shared variables. It is given by <u>Bell numbers</u>. E.g., 12 shared variables ⇒ over four million equivalence relations. Solution: Deterministic Version

Page 19 of 31

Deterministic Version	Phase 1: Variable Abstraction
<u>Phase 1</u> as before <u>Phase 2</u> asks the decision procedures P_1 and P_2 to propagate new equalities.	$\frac{\text{Example 3}}{F: f(f(x) - f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z}$
Example 3	Replace $f(x)$ by u , $f(y)$ by v , $u - v$ by w
Theory of equality T_E P_E $F_{\mathbb{C}}$ Rational linear arithmethic $T_{\mathbb{Q}}$ $P_{\mathbb{Q}}$ $F: f(f(x)-f(y)) \neq f(z) \land x \leq y \land y + z \leq x \land 0 \leq z$ $(T_E \cup T_{\mathbb{Q}})$ -unsatisfiable	$\begin{array}{ll} F_E: & f(w) \neq f(z) \land u = f(x) \land v = f(y) & \dots & T_E\text{-formula} \\ F_\mathbb{Q}: & x \leq y \land y + z \leq x \land 0 \leq z \land w = u - v & \dots & T_\mathbb{Q}\text{-formula} \\ & \text{shared}(F_E, F_\mathbb{Q}) = \{x, y, z, u, v, w\} \\ & \text{Nondeterministic version} & - \text{over 200 Es!} \\ & \text{Let's try the deterministic version.} \end{array}$
Intuitively, last 3 conjuncts $\Rightarrow x = y \land z = 0$ contradicts 1st conjunct Page 21 of 31	ි Page 22 of 31
Phase 2: Equality Propagation	Convex Theories
Example 3 $F_{E}: f(w) \neq f(z) \land u = f(x) \land v = f(y)$ $F_{Q}: x \leq y \land y + z \leq x \land 0 \leq z \land w = u - v$ $\begin{bmatrix} P_{Q} \\ F_{Q} \models x = y \\ \{x = y\} \\ \{x = y\} \\ \{x = y, u = v\} \\ F_{Q} \land u = v \models z = w \\ \{x = y, u = v, z = w\} \\ \{x = y, u = v, z = w\} \\ \downarrow \\ \downarrow \end{bmatrix}$	Definition A Σ -theory T is convex iff for every quantifier-free conjunctive Σ -formula F and for every disjunction $\bigvee_{i=1}^{n} (u_i = v_i)$ if $F \Rightarrow \bigvee_{i=1}^{n} (u_i = v_i)$ then $F \Rightarrow u_i = v_i$, for some $i \in \{1,, n\}$ Claim Equality propagation is a decision procedure for convex theories.
Contradiction. Thus, F is $(T_{\mathbb{Q}} \cup T_{E})$ -unsatisfiable. (If there were no contradiction, F would be $(T_{\mathbb{Q}} \cup T_{E})$	Pare 24 of 31

Convex Theories	Convex Theories
• T_E , $T_{\mathbb{R}}$, $T_{\mathbb{Q}}$, T_{cons} are convex	Example: Theory of arrays T_A is not convex
► T _Z , T _A are not convex	Consider the quantifier-free conjunctive $\boldsymbol{\Sigma}_A\text{-}formula$
Example: T_Z is not convex Consider quantifier-free conjunctive Σ_Z -formula $F: 1 \le z \land z \le 2 \land u = 1 \land v = 2$ Then $F \Rightarrow z = u \lor z = v$ but	$\begin{array}{l} F: \ a(i \triangleleft v)[j] = v \ . \end{array}$ Then $F \ \Rightarrow \ i = j \ \lor \ a[j] = v \ ,$ but $F \not\Rightarrow \ i = j \\ F \not\Rightarrow \ a[j] = v \ . \end{array}$
$F \Rightarrow z = u$ $F \Rightarrow z = v$ Page 25 of 31	우리 (종· (종· 종·)종 (종) Page 26 of 31
What if T is Not Convex?	Example 1: Non-Convex Theory
Case split when: $\mathcal{F} \ \Rightarrow \ \bigvee_{i=1}^n (u_i = v_i)$	$ \begin{array}{c} T_{\mathbb{Z}} \text{ not convex!} & T_{E} \text{ convex} \\ \hline P_{\mathbb{Z}} & & P_{E} \\ F & : & 1 \leq x \ \land \ x \leq 2 \ \land \ f(x) \neq f(1) \ \land \ f(x) \neq f(2) \end{array} $
 but F ≠ u_i = v_i for any i = 1,, n For each i = 1,, n, construct a branch on which u_i = v_i is assumed. If all branches are contradictory, then unsatisfiable. Otherwise, satisfiable. 	in $T_{\mathbb{Z}} \cup T_{E}$. \blacktriangleright Replace $f(1)$ by $f(w_1)$, and add $w_1 = 1$. \blacktriangleright Replace $f(2)$ by $f(w_2)$, and add $w_2 = 2$. Result:
$u_1 = v_1 \qquad u_n = v_n$ $u_1 = v_1 \qquad u_n = v_n$ Claim: Equality propagation (with branching) is a decision procedure for non-convex theories too.	$\begin{array}{rcl} F_{\mathbb{Z}} & : & 1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2 \\ F_E & : & f(x) \neq f(w_1) \land f(x) \neq f(w_2) \end{array}$ and $V = \mathrm{shared}(F_{\mathbb{Z}}, F_E) = \{x, w_1, w_2\}$
Page 27 of 31	Page 28 of 31

0	Example 4: Non-Convex Theory
	Consider
$x = w_1 x = w_2$	F : $1 \leq x \land x \leq 3 \land$
$\{x = w_1\} \qquad \{x = w_2\}$	$f(x) \neq f(1) \land f(x) \neq f(3) \land f(1) \neq f(2)$
	in $T_{\mathbb{Z}} \cup T_{E}$.
$F_E \wedge x = w_1 \models \bot \qquad \qquad F_E \wedge x = w_2 \models \bot$	• Replace $f(1)$ by $f(w_1)$, and add $w_1 = 1$.
	Replace $f(2)$ by $f(w_2)$, and add $w_2 = 2$. Replace $f(3)$ by $f(w_2)$ and add $w_3 = 3$.
	Propriate $r(3)$ by $r(w_3)$, and add $w_3 = 3$.
$\star: \ F_{\mathbb{Z}} \models x = w_1 \ \lor \ x = w_2$	
All leaves are labeled with $\bot \rightarrow F$ is $(T_{F} \sqcup T_{F})$ unsatisfiable	$F_{\mathbb{Z}} : 1 \le x \land x \le 3 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3$
All leaves are labeled with $\perp \Rightarrow r$ is $(T_{\mathbb{Z}} \cup T_{\mathbb{E}})$ -unsatisfiable.	$F_E : f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2)$
	and $V = \text{shared}(F_{\text{E}}, F_{\text{E}}) = \{x, y_{\text{E}}, y_{\text{E}}, y_{\text{E}}, y_{\text{E}}\}$
<□> (書) (書) (書) (書) (書) (Pare 20 of 31	$V = \text{Stated}(I_Z, I_E) = \{X, W_1, W_2, W_3\}$
Formula 4: New Community Theorem	
Example 4. Non-Convex Theory	
$x = w_1 x = w_2 x = w_3$	
$\{x = w_1\}$ $\{x = w_2\}$ $\{x = w_3\}$	
$F_E \wedge x = w_1 \models \bot \qquad \qquad F_E \wedge x = w_3 \models \bot$	
\perp \perp	
$\star: \ F_{\mathbb{Z}} \models x = w_1 \ \lor \ x = w_2 \ \lor \ x = w_3$	
No more equations on middle leaf \Rightarrow <i>F</i> is ($T_{\mathbb{Z}} \cup T_{E}$)-satisfiable.	
۲۵۰۰۵۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	